Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
170587727136470181710 ~1997
170593897511781691110 ~1998
1705968233411936479 ~1995
170596831170596831110 ~1997
170597071307074727910 ~1998
1705984193411968399 ~1995
1706081993412163999 ~1995
1706098913412197839 ~1995
1706132273173406022311 ~2000
1706158913412317839 ~1995
1706178833412357679 ~1995
170619637102371782310 ~1996
170623753102374251910 ~1996
1706256833412513679 ~1995
170628281136502624910 ~1997
170633831136507064910 ~1997
1706374433412748879 ~1995
170637799170637799110 ~1997
1706392793412785599 ~1995
1706402513412805039 ~1995
170641351273026161710 ~1998
170642179170642179110 ~1997
170642599409542237710 ~1998
1706438393412876799 ~1995
1706439713412879439 ~1995
Exponent Prime Factor Digits Year
1706472593412945199 ~1995
1706482793412965599 ~1995
1706539193413078399 ~1995
170660513102396307910 ~1996
170661053102396631910 ~1996
1706616713413233439 ~1995
1706634833413269679 ~1995
1706663993413327999 ~1995
1706683433413366879 ~1995
1706694833413389679 ~1995
1706822513413645039 ~1995
170684057102410434310 ~1996
1706863313413726639 ~1995
1706866433413732879 ~1995
1706896193413792399 ~1995
170691557136553245710 ~1997
1706922673686952967311 ~2000
170694001102416400710 ~1996
1706950433413900879 ~1995
170697251136557800910 ~1997
1707021113414042239 ~1995
170704153102422491910 ~1996
1707051233414102479 ~1995
1707112313414224639 ~1995
1707146993414293999 ~1995
Exponent Prime Factor Digits Year
1707173033414346079 ~1995
1707182633414365279 ~1995
170718341102431004710 ~1996
170718619170718619110 ~1997
1707191633414383279 ~1995
170724613102434767910 ~1996
170726069136580855310 ~1997
1707271433414542879 ~1995
1707276713414553439 ~1995
170729311307312759910 ~1998
1707331193414662399 ~1995
1707355313414710639 ~1995
1707365393414730799 ~1995
1707367193414734399 ~1995
1707379913414759839 ~1995
1707399113414798239 ~1995
1707415793414831599 ~1995
1707551633415103279 ~1995
1707558833415117679 ~1995
1707560393415120799 ~1995
1707570113415140239 ~1995
1707596633415193279 ~1995
170760433102456259910 ~1996
170764459409834701710 ~1998
1707677993415355999 ~1995
Exponent Prime Factor Digits Year
170769419136615535310 ~1997
1707773033415546079 ~1995
1707793193415586399 ~1995
1707815633415631279 ~1995
170785841102471504710 ~1996
1707897713415795439 ~1995
1707904193415808399 ~1995
1707932633415865279 ~1995
170799389239119144710 ~1997
1708026833416053679 ~1995
1708031513416063039 ~1995
1708039313416078639 ~1995
1708048913416097839 ~1995
170808577683234308110 ~1998
1708144313416288639 ~1995
1708173593416347199 ~1995
170819507854097535110 ~1999
1708275713416551439 ~1995
170829641102497784710 ~1996
1708321313416642639 ~1995
170836453102501871910 ~1996
170841563717534564710 ~1999
1708416593416833199 ~1995
1708433393416866799 ~1995
1708433993416867999 ~1995
Home
5.187.277 digits
e-mail
25-11-17