Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2534908195069816399 ~1997
2534964715069929439 ~1997
253501201152100720710 ~1998
2535102595070205199 ~1997
2535122635070245279 ~1997
2535268915070537839 ~1997
2535317035070634079 ~1997
2535333235070666479 ~1997
253534997202827997710 ~1998
253545121405672193710 ~1999
2535510595071021199 ~1997
2535540835071081679 ~1997
2535618835071237679 ~1997
2535623395071246799 ~1997
2535745435071490879 ~1997
2535755231065017196711 ~2000
2535782635071565279 ~1997
2535789715071579439 ~1997
253585961152151576710 ~1998
2535903835071807679 ~1997
2535938635071877279 ~1997
2535953395071906799 ~1997
253602281202881824910 ~1998
2536151515072303039 ~1997
253619453152171671910 ~1998
Exponent Prime Factor Digits Year
2536219195072438399 ~1997
2536245715072491439 ~1997
2536383235072766479 ~1997
253639349202911479310 ~1998
253639517202911613710 ~1998
253642421152185452710 ~1998
253646021152187612710 ~1998
2536658515073317039 ~1997
2536714435073428879 ~1997
2536725115073450239 ~1997
253672753152203651910 ~1998
253673267202938613710 ~1998
253675381405880609710 ~1999
253676321202941056910 ~1998
253680677152208406310 ~1998
2536815431065462480711 ~2000
2536819795073639599 ~1997
253685753152211451910 ~1998
253691617152214970310 ~1998
2537021395074042799 ~1997
2537255515074511039 ~1997
2537335915074671839 ~1997
253738819608973165710 ~1999
253753217355254503910 ~1999
2537634835075269679 ~1997
Exponent Prime Factor Digits Year
253765991203012792910 ~1998
253766069203012855310 ~1998
253769107253769107110 ~1998
2537717515075435039 ~1997
253776001152265600710 ~1998
2537910715075821439 ~1997
2537926315075852639 ~1997
2537928115075856239 ~1997
2537950795075901599 ~1997
253799167406078667310 ~1999
2538016435076032879 ~1997
2538111715076223439 ~1997
2538114835076229679 ~1997
2538153115076306239 ~1997
253816907203053525710 ~1998
253823113406116980910 ~1999
2538231595076463199 ~1997
253838089609211413710 ~1999
253849529609238869710 ~1999
2538771115077542239 ~1997
2538837115077674239 ~1997
2538845035077690079 ~1997
2538910195077820399 ~1997
253895513152337307910 ~1998
2538996715077993439 ~1997
Exponent Prime Factor Digits Year
253901017152340610310 ~1998
2539092235078184479 ~1997
2539152235078304479 ~1997
2539165692386815748711 ~2001
2539198435078396879 ~1997
253921669609412005710 ~1999
2539298395078596799 ~1997
2539335835078671679 ~1997
2539393691015757476111 ~2000
2539437715078875439 ~1997
2539486315078972639 ~1997
253952551253952551110 ~1998
2539554595079109199 ~1997
253964521152378712710 ~1998
253969271203175416910 ~1998
253974317152384590310 ~1998
2539755835079511679 ~1997
2539813195079626399 ~1997
2539941835079883679 ~1997
2539982635079965279 ~1997
2540007835080015679 ~1997
254005571203204456910 ~1998
2540225395080450799 ~1997
254026841203221472910 ~1998
2540297035080594079 ~1997
Home
4.724.182 digits
e-mail
25-04-13