Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2529698635059397279 ~1997
2529806391062518683911 ~2000
2529905395059810799 ~1997
2530101715060203439 ~1997
2530111315060222639 ~1997
2530112995060225999 ~1997
2530118515060237039 ~1997
253018013151810807910 ~1998
253025257151815154310 ~1998
2530277395060554799 ~1997
2530279195060558399 ~1997
2530334635920983034311 ~2002
253040147202432117710 ~1998
2530512835061025679 ~1997
253051657151830994310 ~1998
2530540795061081599 ~1997
253055497151833298310 ~1998
253055521556722146310 ~1999
2530568035061136079 ~1997
253060021151836012710 ~1998
2530601635061203279 ~1997
253061261202449008910 ~1998
2530646395061292799 ~1997
2530656715061313439 ~1997
2530707115061414239 ~1997
Exponent Prime Factor Digits Year
253070977151842586310 ~1998
2530773715061547439 ~1997
2530799515061599039 ~1997
2530851595061703199 ~1997
2530867915061735839 ~1997
2531059915062119839 ~1997
2531067835062135679 ~1997
2531136835062273679 ~1997
2531189031265594515111 ~2000
2531255995062511999 ~1997
2531256235062512479 ~1997
2531258395062516799 ~1997
253127137151876282310 ~1998
2531315035062630079 ~1997
2531317315062634639 ~1997
253137713151882627910 ~1998
2531399635062799279 ~1997
2531442115062884239 ~1997
253145069354403096710 ~1999
2531487115062974239 ~1997
2531513035063026079 ~1997
253154641151892784710 ~1998
253157291202525832910 ~1998
253163137151897882310 ~1998
2531730835063461679 ~1997
Exponent Prime Factor Digits Year
253176817151906090310 ~1998
2532017035064034079 ~1997
2532047995064095999 ~1997
2532116395064232799 ~1997
253217441810295811310 ~2000
253249091202599272910 ~1998
2532526195065052399 ~1997
2532538011570173566311 ~2000
2532582235065164479 ~1997
253269299202615439310 ~1998
2532780595065561199 ~1997
2532815035065630079 ~1997
253285121202628096910 ~1998
253288267405261227310 ~1999
253289459202631567310 ~1998
2532904315065808639 ~1997
2532922435065844879 ~1997
2532960835065921679 ~1997
2532968995065937999 ~1997
2533015795066031599 ~1997
2533023595066047199 ~1997
2533044595066089199 ~1997
2533074595066149199 ~1997
2533103035066206079 ~1997
2533179835066359679 ~1997
Exponent Prime Factor Digits Year
2533420915066841839 ~1997
253353179202682543310 ~1998
2533549435067098879 ~1997
2533603915067207839 ~1997
2533718035067436079 ~1997
253373123608095495310 ~1999
2533747435067494879 ~1997
2533757995067515999 ~1997
2533811515067623039 ~1997
2533813435067626879 ~1997
253394017152036410310 ~1998
253396993152038195910 ~1998
2534146435068292879 ~1997
2534383195068766399 ~1997
253448233152068939910 ~1998
2534501635069003279 ~1997
2534513395069026799 ~1997
2534544835069089679 ~1997
2534556235069112479 ~1997
253459313152075587910 ~1998
2534707195069414399 ~1997
253472137152083282310 ~1998
2534859595069719199 ~1997
253486517202789213710 ~1998
253487681152092608710 ~1998
Home
4.724.182 digits
e-mail
25-04-13