Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2174970611565978839311 ~2000
2174986794349973599 ~1996
217520489174016391310 ~1998
2175336714350673439 ~1996
217553153130531891910 ~1997
217553767217553767110 ~1998
2175615114351230239 ~1996
217563641174050912910 ~1998
217567759217567759110 ~1998
2175705114351410239 ~1996
217572581130543548710 ~1997
2175741834351483679 ~1996
217576061174060848910 ~1998
2175800034351600079 ~1996
217580873130548523910 ~1997
2175837714351675439 ~1996
217586597174069277710 ~1998
2175873234351746479 ~1996
2175943794351887599 ~1996
217598567391677420710 ~1998
2176043514352087039 ~1996
217609589522263013710 ~1999
217628009174102407310 ~1998
2176331034352662079 ~1996
2176379394352758799 ~1996
Exponent Prime Factor Digits Year
2176556994353113999 ~1996
2176765794353531599 ~1996
2176811994353623999 ~1996
2176844514353689039 ~1996
2176862634353725279 ~1996
2176952394353904799 ~1996
2176984194353968399 ~1996
217699121130619472710 ~1997
2177049114354098239 ~1996
2177092914354185839 ~1996
217711973130627183910 ~1997
2177120634354241279 ~1996
217715027174172021710 ~1998
2177160714354321439 ~1996
2177309394354618799 ~1996
2177320194354640399 ~1996
2177367234354734479 ~1996
2177459034354918079 ~1996
2177492994354985999 ~1996
2177626914355253839 ~1996
2177676771219498991311 ~2000
2177737194355474399 ~1996
2177766234355532479 ~1996
217781413130668847910 ~1997
2177817834355635679 ~1996
Exponent Prime Factor Digits Year
2177852994355705999 ~1996
2177857794355715599 ~1996
217787837174230269710 ~1998
2177922714355845439 ~1996
217793461653380383110 ~1999
2177947194355894399 ~1996
2177996514355993039 ~1996
217801301130680780710 ~1997
2178087714356175439 ~1996
2178100511568232367311 ~2000
2178189594356379199 ~1996
217822711348516337710 ~1998
2178231891742585512111 ~2000
2178279834356559679 ~1996
2178283434356566879 ~1996
2178370434356740879 ~1996
217838273304973582310 ~1998
2178414114356828239 ~1996
2178461034356922079 ~1996
217847501174278000910 ~1998
2178535794357071599 ~1996
2178544931524981451111 ~2000
217868159522883581710 ~1999
217868977130721386310 ~1997
2178722994357445999 ~1996
Exponent Prime Factor Digits Year
217872793479320144710 ~1999
2178748794357497599 ~1996
217877071348603313710 ~1998
2178786591045817563311 ~1999
2178831114357662239 ~1996
2178899994357799999 ~1996
217898951174319160910 ~1998
2179027914358055839 ~1996
217915007174332005710 ~1998
2179169034358338079 ~1996
2179274994358549999 ~1996
2179327911743462328111 ~2000
2179364514358729039 ~1996
2179429794358859599 ~1996
2179494114358988239 ~1996
2179521234359042479 ~1996
2179661394359322799 ~1996
217970713130782427910 ~1997
2179739634359479279 ~1996
217978261130786956710 ~1997
217979087523149808910 ~1999
217979753130787851910 ~1997
217983043217983043110 ~1998
2179856994359713999 ~1996
217991281130794768710 ~1997
Home
4.768.925 digits
e-mail
25-05-04