Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2111202234222404479 ~1996
211120961126672576710 ~1997
211121327168897061710 ~1997
2111255034222510079 ~1996
2111419794222839599 ~1996
211142923211142923110 ~1998
211153171337845073710 ~1998
211156381633469143110 ~1999
2111569194223138399 ~1996
2111602314223204639 ~1996
2111728914223457839 ~1996
2111812314223624639 ~1996
2111822034223644079 ~1996
2111943114223886239 ~1996
211196053126717631910 ~1997
211205441802580675910 ~1999
2112067314224134639 ~1996
211206893126724135910 ~1997
2112160794224321599 ~1996
2112266514224533039 ~1996
2112266634224533279 ~1996
2112286314224572639 ~1996
2112324594224649199 ~1996
211236161126741696710 ~1997
2112365634224731279 ~1996
Exponent Prime Factor Digits Year
211240741126744444710 ~1997
211248413633745239110 ~1999
2112501594225003199 ~1996
211253143211253143110 ~1998
211255127507012304910 ~1999
2112567114225134239 ~1996
211259621126755772710 ~1997
2112621714225243439 ~1996
211262503718292510310 ~1999
2112800994225601999 ~1996
2112855594225711199 ~1996
2113027794226055599 ~1996
2113074714226149439 ~1996
211309741126785844710 ~1997
2113134714226269439 ~1996
211315073126789043910 ~1997
211320581126792348710 ~1997
211320773676226473710 ~1999
211324013126794407910 ~1997
2113249794226499599 ~1996
211332761126799656710 ~1997
2113386234226772479 ~1996
211346129169076903310 ~1997
2113505394227010799 ~1996
2113525914227051839 ~1996
Exponent Prime Factor Digits Year
211361429676356572910 ~1999
2113644234227288479 ~1996
2113649034227298079 ~1996
2113694514227389039 ~1996
2113745034227490079 ~1996
211375001169100000910 ~1997
211377157126826294310 ~1997
211387073126832243910 ~1997
2113898514227797039 ~1996
2114039994228079999 ~1996
2114095314228190639 ~1996
2114239314228478639 ~1996
2114294175412593075311 ~2001
211445401126867240710 ~1997
2114553114229106239 ~1996
211456321126873792710 ~1997
2114589834229179679 ~1996
211463579169170863310 ~1997
2114683434229366879 ~1996
211473973126884383910 ~1997
2114752194229504399 ~1996
2114816634229633279 ~1996
211491227169192981710 ~1997
2114936034229872079 ~1996
211493837126896302310 ~1997
Exponent Prime Factor Digits Year
2114947434229894879 ~1996
2115000834230001679 ~1996
211508827211508827110 ~1998
2115261234230522479 ~1996
2115289314230578639 ~1996
211531037169224829710 ~1997
2115339114230678239 ~1996
2115373513553827496911 ~2001
2115471834230943679 ~1996
211548331211548331110 ~1998
2115571794231143599 ~1996
2115590634231181279 ~1996
211559111169247288910 ~1997
2115811794231623599 ~1996
2115826914231653839 ~1996
211583453126950071910 ~1997
2115843114231686239 ~1996
2115878514231757039 ~1996
211589221126953532710 ~1997
2115953994231907999 ~1996
2116010634232021279 ~1996
2116167114232334239 ~1996
2116169034232338079 ~1996
211618513634855539110 ~1999
2116201914232403839 ~1996
Home
4.768.925 digits
e-mail
25-05-04