Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
219880337131928202310 ~1997
2198822514397645039 ~1996
2198842794397685599 ~1996
219886973307841762310 ~1998
219887237175909789710 ~1998
2198901234397802479 ~1996
219891509175913207310 ~1998
219893857527745256910 ~1999
219896167395813100710 ~1998
2198997834397995679 ~1996
219910363219910363110 ~1998
2199131034398262079 ~1996
219927163219927163110 ~1998
219927343219927343110 ~1998
2199294714398589439 ~1996
2199332994398665999 ~1996
2199359394398718799 ~1996
2199459594398919199 ~1996
2199469314398938639 ~1996
2199553314399106639 ~1996
219959027175967221710 ~1998
219984209703949468910 ~1999
219987961131992776710 ~1997
219991301131994780710 ~1997
2199959994399919999 ~1996
Exponent Prime Factor Digits Year
2199970314399940639 ~1996
2199976194399952399 ~1996
2200093194400186399 ~1996
2200229634400459279 ~1996
2200279194400558399 ~1996
2200289994400579999 ~1996
2200312914400625839 ~1996
220033013528079231310 ~1999
2200359834400719679 ~1996
2200464714400929439 ~1996
2200470114400940239 ~1996
2200525314401050639 ~1996
2200553514401107039 ~1996
2200560594401121199 ~1996
220060327220060327110 ~1998
2200618434401236879 ~1996
220062431704199779310 ~1999
220063037176050429710 ~1998
2200645434401290879 ~1996
2200668114401336239 ~1996
2200668711760534968111 ~2000
220068217132040930310 ~1997
2200718994401437999 ~1996
220072129528173109710 ~1999
2200726314401452639 ~1996
Exponent Prime Factor Digits Year
220077929308109100710 ~1998
2200850034401700079 ~1996
2200938594401877199 ~1996
2200980411364607854311 ~2000
2201130834402261679 ~1996
220122641176098112910 ~1998
2201276811893098056711 ~2000
2201384034402768079 ~1996
220139951176111960910 ~1998
2201408394402816799 ~1996
2201411394402822799 ~1996
2201441034402882079 ~1996
2201512314403024639 ~1996
220163677132098206310 ~1997
2201704914403409839 ~1996
2201777994403555999 ~1996
220182539704584124910 ~1999
2201828994403657999 ~1996
2201842914403685839 ~1996
2201848794403697599 ~1996
2201870394403740799 ~1996
2201915634403831279 ~1996
220195931176156744910 ~1998
220199179220199179110 ~1998
2202099114404198239 ~1996
Exponent Prime Factor Digits Year
220212467396382440710 ~1998
220216397132129838310 ~1997
220216457132129874310 ~1997
2202189594404379199 ~1996
220219561352351297710 ~1998
2202199914404399839 ~1996
2202263514404527039 ~1996
2202270834404541679 ~1996
2202453234404906479 ~1996
220246363528591271310 ~1999
2202486834404973679 ~1996
2202638994405277999 ~1996
2202643914405287839 ~1996
2202678714405357439 ~1996
220274113132164467910 ~1997
2202762011057325764911 ~2000
220279481132167688710 ~1997
2202827634405655279 ~1996
22028626710221282788912 ~2002
2202898314405796639 ~1996
2202936114405872239 ~1996
2202955914405911839 ~1996
2202966834405933679 ~1996
220300313132180187910 ~1997
2203058034406116079 ~1996
Home
4.724.182 digits
e-mail
25-04-13