Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
220797509176638007310 ~1998
2207977434415954879 ~1996
220798393132479035910 ~1997
220800821132480492710 ~1997
2208172794416345599 ~1996
2208177834416355679 ~1996
2208209034416418079 ~1996
220835759176668607310 ~1998
220839737309175631910 ~1998
2208484314416968639 ~1996
2208581394417162799 ~1996
2208583434417166879 ~1996
220860953132516571910 ~1997
2208612114417224239 ~1996
2208713634417427279 ~1996
2208762611546133827111 ~2000
2208774114417548239 ~1996
2208821994417643999 ~1996
220904759176723807310 ~1998
220911191176728952910 ~1998
2209162314418324639 ~1996
220919813132551887910 ~1997
2209208034418416079 ~1996
2209362834418725679 ~1996
2209389114418778239 ~1996
Exponent Prime Factor Digits Year
220942517132565510310 ~1997
2209429131590788973711 ~2000
220951321486092906310 ~1999
2209513314419026639 ~1996
2209522194419044399 ~1996
2209546314419092639 ~1996
2209601634419203279 ~1996
220965713132579427910 ~1997
220977599176782079310 ~1998
220979441176783552910 ~1998
2209862634419725279 ~1996
2209935834419871679 ~1996
2209972914419945839 ~1996
2209997394419994799 ~1996
2210001371016600630311 ~1999
221004139221004139110 ~1998
2210048514420097039 ~1996
2210052234420104479 ~1996
221008213132604927910 ~1997
221012501132607500710 ~1997
2210126634420253279 ~1996
221014457132608674310 ~1997
2210224931591361949711 ~2000
221028257663084771110 ~1999
221031913663095739110 ~1999
Exponent Prime Factor Digits Year
2210741514421483039 ~1996
221088053132652831910 ~1997
2210949834421899679 ~1996
2211016314422032639 ~1996
2211102714422205439 ~1996
2211152634422305279 ~1996
2211235434422470879 ~1996
2211256434422512879 ~1996
221129801132677880710 ~1997
221131301132678780710 ~1997
2211348834422697679 ~1996
221140547176912437710 ~1998
2211432714422865439 ~1996
2211453114422906239 ~1996
221147947221147947110 ~1998
221152621132691572710 ~1997
2211543594423087199 ~1996
2211572634423145279 ~1996
221160697132696418310 ~1997
221168219398102794310 ~1998
2211732234423464479 ~1996
221177857132706714310 ~1997
221178673132707203910 ~1997
221191757176953405710 ~1998
221194321132716592710 ~1997
Exponent Prime Factor Digits Year
2211964914423929839 ~1996
221196533132717919910 ~1997
2211965514423931039 ~1996
2212045314424090639 ~1996
2212045794424091599 ~1996
221205821840582119910 ~1999
2212092234424184479 ~1996
2212153434424306879 ~1996
2212160634424321279 ~1996
221222983353956772910 ~1998
2212329834424659679 ~1996
2212342914424685839 ~1996
2212406994424813999 ~1996
221250907221250907110 ~1998
2212509594425019199 ~1996
2212528314425056639 ~1996
2212614714425229439 ~1996
2212636434425272879 ~1996
2212727034425454079 ~1996
2212750914425501839 ~1996
2212783914425567839 ~1996
2212809714425619439 ~1996
2212822194425644399 ~1996
221283521177026816910 ~1998
221293357132776014310 ~1997
Home
4.724.182 digits
e-mail
25-04-13