Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2033017794066035599 ~1996
2033156634066313279 ~1996
203317409284644372710 ~1998
203321177121992706310 ~1997
203321689447307715910 ~1998
2033240394066480799 ~1996
203326691162661352910 ~1997
2033316594066633199 ~1996
2033318514066637039 ~1996
203350789447371735910 ~1998
203358733488060959310 ~1999
2033606034067212079 ~1996
2033609034067218079 ~1996
2033612994067225999 ~1996
203372909162698327310 ~1997
2033731794067463599 ~1996
203373917122024350310 ~1997
2033745114067490239 ~1996
2033839914067679839 ~1996
2033882994067765999 ~1996
2033939034067878079 ~1996
203397391203397391110 ~1998
2033975394067950799 ~1996
203404493122042695910 ~1997
2034066114068132239 ~1996
Exponent Prime Factor Digits Year
2034080634068161279 ~1996
2034113034068226079 ~1996
203412277122047366310 ~1997
203414357122048614310 ~1997
2034146634068293279 ~1996
203415847203415847110 ~1998
2034178914068357839 ~1996
2034187794068375599 ~1996
2034206634068413279 ~1996
2034243114068486239 ~1996
2034283914068567839 ~1996
2034291114068582239 ~1996
203434321122060592710 ~1997
2034408234068816479 ~1996
2034470994068941999 ~1996
2034553314069106639 ~1996
2034604434069208879 ~1996
2034663594069327199 ~1996
2034925434069850879 ~1996
2034995634069991279 ~1996
203502751366304951910 ~1998
2035095714070191439 ~1996
2035117794070235599 ~1996
203513671366324607910 ~1998
203518949651260636910 ~1999
Exponent Prime Factor Digits Year
203521337162817069710 ~1997
2035336194070672399 ~1996
203540941122124564710 ~1997
2035421514070843039 ~1996
203546999162837599310 ~1997
2035472994070945999 ~1996
2035609434071218879 ~1996
2035708914071417839 ~1996
203571197122142718310 ~1997
2035722834071445679 ~1996
2035798914071597839 ~1996
2035802634071605279 ~1996
203584541122150724710 ~1997
203585939162868751310 ~1997
2035959234071918479 ~1996
203607977285051167910 ~1998
203615897162892717710 ~1997
203617277122170366310 ~1997
2036180394072360799 ~1996
2036276634072553279 ~1996
203629901122177940710 ~1997
2036395314072790639 ~1996
203640313122184187910 ~1997
2036491194072982399 ~1996
2036502834073005679 ~1996
Exponent Prime Factor Digits Year
2036521914073043839 ~1996
203654197325846715310 ~1998
2036653314073306639 ~1996
2036663634073327279 ~1996
203673079203673079110 ~1998
203679599162943679310 ~1997
2036805114073610239 ~1996
2036894394073788799 ~1996
2036991834073983679 ~1996
2037002514074005039 ~1996
2037042714074085439 ~1996
2037082314074164639 ~1996
203710187162968149710 ~1997
2037129234074258479 ~1996
2037287514074575039 ~1996
2037291714074583439 ~1996
203729833325967732910 ~1998
203736241122241744710 ~1997
203738449448224587910 ~1998
2037432471018716235111 ~1999
2037443994074887999 ~1996
203747597162998077710 ~1997
203775961122265576710 ~1997
2037791394075582799 ~1996
203782801122269680710 ~1997
Home
4.768.925 digits
e-mail
25-05-04