Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2120082594240165199 ~1996
212016379212016379110 ~1998
2120246994240493999 ~1996
212026313127215787910 ~1997
212031517339250427310 ~1998
2120395434240790879 ~1996
2120432034240864079 ~1996
2120446914240893839 ~1996
2120452314240904639 ~1996
2120489514240979039 ~1996
2120514594241029199 ~1996
212068607169654885710 ~1997
212068699212068699110 ~1998
2120717634241435279 ~1996
2120773314241546639 ~1996
2120818794241637599 ~1996
2120832714241665439 ~1996
2120839194241678399 ~1996
2120886714241773439 ~1996
2120912514241825039 ~1996
2120936394241872799 ~1996
212093933127256359910 ~1997
2121002994242005999 ~1996
212100937127260562310 ~1997
2121018594242037199 ~1996
Exponent Prime Factor Digits Year
2121065394242130799 ~1996
2121073314242146639 ~1996
2121095634242191279 ~1996
2121103314242206639 ~1996
212112059169689647310 ~1997
2121149394242298799 ~1996
2121196434242392879 ~1996
212127319848509276110 ~1999
212132177127279306310 ~1997
2121355194242710399 ~1996
212141927381855468710 ~1998
212151281127290768710 ~1997
2121528834243057679 ~1996
2121594834243189679 ~1996
212159879169727903310 ~1997
2121616794243233599 ~1996
2121619314243238639 ~1996
212169821169735856910 ~1997
2121701514243403039 ~1996
2121721794243443599 ~1996
2121881994243763999 ~1996
2121921114243842239 ~1996
2121944394243888799 ~1996
2122226034244452079 ~1996
2122278714244557439 ~1996
Exponent Prime Factor Digits Year
2122281834244563679 ~1996
2122310034244620079 ~1996
212235371891388558310 ~1999
2122361634244723279 ~1996
212244661127346796710 ~1997
212246351169797080910 ~1997
2122466034244932079 ~1996
2122501794245003599 ~1996
2122502994245005999 ~1996
212250329297150460710 ~1998
2122516194245032399 ~1996
212255521127353312710 ~1997
2122609314245218639 ~1996
2122700394245400799 ~1996
2122709394245418799 ~1996
2122734234245468479 ~1996
2122864131188803912911 ~2000
2122875714245751439 ~1996
2122887114245774239 ~1996
212294917127376950310 ~1997
2123053434246106879 ~1996
2123069813184604715111 ~2001
2123122314246244639 ~1996
2123166234246332479 ~1996
212318801127391280710 ~1997
Exponent Prime Factor Digits Year
2123313234246626479 ~1996
212333501169866800910 ~1997
2123387994246775999 ~1996
2123394234246788479 ~1996
2123434314246868639 ~1996
2123456034246912079 ~1996
212346157127407694310 ~1997
2123518314247036639 ~1996
2123534394247068799 ~1996
212361343212361343110 ~1998
2123636994247273999 ~1996
212363797127418278310 ~1997
2123705514247411039 ~1996
212384741127430844710 ~1997
212384989637154967110 ~1999
212385161127431096710 ~1997
2124056034248112079 ~1996
2124102594248205199 ~1996
2124186234248372479 ~1996
212423353127454011910 ~1997
2124250194248500399 ~1996
212427331339883729710 ~1998
2124411114248822239 ~1996
2124413034248826079 ~1996
212444621127466772710 ~1997
Home
4.724.182 digits
e-mail
25-04-13