Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2115811794231623599 ~1996
2115826914231653839 ~1996
211583453126950071910 ~1997
2115843114231686239 ~1996
2115878514231757039 ~1996
211589221126953532710 ~1997
2115953994231907999 ~1996
2116010634232021279 ~1996
2116167114232334239 ~1996
2116169034232338079 ~1996
211618513634855539110 ~1999
2116201914232403839 ~1996
2116241634232483279 ~1996
211624613126974767910 ~1997
2116347714232695439 ~1996
211637339169309871310 ~1997
2116379994232759999 ~1996
2116418634232837279 ~1996
211649539211649539110 ~1998
2116516194233032399 ~1996
2116590114233180239 ~1996
2116617714233235439 ~1996
2116639794233279599 ~1996
2116669434233338879 ~1996
2116696914233393839 ~1996
Exponent Prime Factor Digits Year
211669901127001940710 ~1997
211671451211671451110 ~1998
2116777434233554879 ~1996
211688809465715379910 ~1999
2116888914233777839 ~1996
211691437127014862310 ~1997
211692001127015200710 ~1997
2116921794233843599 ~1996
2117014194234028399 ~1996
211720349296408488710 ~1998
2117350194234700399 ~1996
211735319508164765710 ~1999
211738001127042800710 ~1997
2117440314234880639 ~1996
2117486394234972799 ~1996
2117500434235000879 ~1996
2117517234235034479 ~1996
2117545194235090399 ~1996
2117560033388096048111 ~2001
2117688114235376239 ~1996
2117766714235533439 ~1996
2117784714235569439 ~1996
2117871834235743679 ~1996
2117873634235747279 ~1996
2117889714235779439 ~1996
Exponent Prime Factor Digits Year
2117938194235876399 ~1996
211797941169438352910 ~1997
211801199381242158310 ~1998
211801633508323919310 ~1999
2118034194236068399 ~1996
211807229169445783310 ~1997
2118137994236275999 ~1996
2118273594236547199 ~1996
211829713127097827910 ~1997
2118381714236763439 ~1996
2118394434236788879 ~1996
2118460914236921839 ~1996
2118591714237183439 ~1996
2118632514237265039 ~1996
211869211338990737710 ~1998
2118711114237422239 ~1996
211874629508499109710 ~1999
211890779169512623310 ~1997
2118944994237889999 ~1996
2118946434237892879 ~1996
2118971514237943039 ~1996
211897541169518032910 ~1997
2119013514238027039 ~1996
2119201794238403599 ~1996
211925537127155322310 ~1997
Exponent Prime Factor Digits Year
2119289034238578079 ~1996
2119290234238580479 ~1996
2119466394238932799 ~1996
211952501169562000910 ~1997
211955617339128987310 ~1998
211960601127176360710 ~1997
211960603211960603110 ~1998
211964147169571317710 ~1997
2119662834239325679 ~1996
211967069635901207110 ~1999
2119671594239343199 ~1996
211970651169576520910 ~1997
211971671169577336910 ~1997
2119718394239436799 ~1996
211971917127183150310 ~1997
2119742994239485999 ~1996
211984967169587973710 ~1997
2119851834239703679 ~1996
2119874034239748079 ~1996
2119884114239768239 ~1996
2119893594239787199 ~1996
2119906314239812639 ~1996
2119984314239968639 ~1996
2120002194240004399 ~1996
2120061834240123679 ~1996
Home
4.724.182 digits
e-mail
25-04-13