Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2348032914696065839 ~1996
234807641140884584710 ~1998
2348090514696181039 ~1996
2348105394696210799 ~1996
2348105771643674039111 ~2000
234815081187852064910 ~1998
2348151834696303679 ~1996
234818897187855117710 ~1998
234822557704467671110 ~1999
2348233314696466639 ~1996
2348283234696566479 ~1996
2348329314696658639 ~1996
234838061140902836710 ~1998
2348409234696818479 ~1996
2348525394697050799 ~1996
2348669394697338799 ~1996
2348677194697354399 ~1996
234868607187894885710 ~1998
2348769234697538479 ~1996
234880673140928403910 ~1998
2348845194697690399 ~1996
2348903994697807999 ~1996
2348976234697952479 ~1996
2348992434697984879 ~1996
2349222114698444239 ~1996
Exponent Prime Factor Digits Year
234929573140957743910 ~1998
2349349194698698399 ~1996
2349352194698704399 ~1996
2349386034698772079 ~1996
234942853563862847310 ~1999
2349433434698866879 ~1996
234951107563882656910 ~1999
234958799187967039310 ~1998
2349603594699207199 ~1996
234961801140977080710 ~1998
2349652314699304639 ~1996
2349770034699540079 ~1996
2349779034699558079 ~1996
2349784314699568639 ~1996
2349801594699603199 ~1996
234983297140989978310 ~1998
234984851187987880910 ~1998
2349929514699859039 ~1996
2349985914699971839 ~1996
235001153141000691910 ~1998
2350076034700152079 ~1996
2350087434700174879 ~1996
2350191114700382239 ~1996
2350226634700453279 ~1996
235031099188024879310 ~1998
Exponent Prime Factor Digits Year
2350324194700648399 ~1996
2350385394700770799 ~1996
2350467714700935439 ~1996
2350517634701035279 ~1996
2350637994701275999 ~1996
235068059188054447310 ~1998
2350725114701450239 ~1996
235074071188059256910 ~1998
2350787514701575039 ~1996
2350839234701678479 ~1996
2350886034701772079 ~1996
235093211423167779910 ~1999
2350963314701926639 ~1996
2351014794702029599 ~1996
235109327188087461710 ~1998
2351167434702334879 ~1996
2351215914702431839 ~1996
2351244714702489439 ~1996
2351301834702603679 ~1996
2351342994702685999 ~1996
2351347194702694399 ~1996
2351350914702701839 ~1996
2351404914702809839 ~1996
235147403611383247910 ~1999
235153591235153591110 ~1998
Exponent Prime Factor Digits Year
235154981141092988710 ~1998
235161373141096823910 ~1998
2351674971128803985711 ~2000
2351708994703417999 ~1996
235182113329254958310 ~1998
235182331235182331110 ~1998
2351866314703732639 ~1996
235197119188157695310 ~1998
2351983194703966399 ~1996
2352044994704089999 ~1996
2352216594704433199 ~1996
235225259188180207310 ~1998
235234291235234291110 ~1998
235237501141142500710 ~1998
2352398994704797999 ~1996
2352488034704976079 ~1996
2352502434705004879 ~1996
235252013141151207910 ~1998
2352581394705162799 ~1996
235260107188208085710 ~1998
2352625194705250399 ~1996
235268167235268167110 ~1998
2352754794705509599 ~1996
2352821994705643999 ~1996
235284593329398430310 ~1998
Home
4.724.182 digits
e-mail
25-04-13