Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1849488713698977439 ~1996
184951427147961141710 ~1997
1849631393699262799 ~1996
184964033110978419910 ~1997
1849731113699462239 ~1996
1849744793699489599 ~1996
184976863184976863110 ~1997
1849791113699582239 ~1996
1849806713699613439 ~1996
1849824113699648239 ~1996
184984337110990602310 ~1997
184986601110991960710 ~1997
1849866713699733439 ~1996
184989317110993590310 ~1997
1849897433699794879 ~1996
184992961295988737710 ~1998
184993801110996280710 ~1997
184997353406994176710 ~1998
1849977833699955679 ~1996
1850037713700075439 ~1996
1850082233700164479 ~1996
1850172713700345439 ~1996
1850188433700376879 ~1996
1850197433700394879 ~1996
1850204633700409279 ~1996
Exponent Prime Factor Digits Year
1850321633700643279 ~1996
185033803629114930310 ~1999
1850341913700683839 ~1996
1850453633700907279 ~1996
185047141111028284710 ~1997
1850488193700976399 ~1996
1850636993701273999 ~1996
1850658833701317679 ~1996
1850706371739663987911 ~2000
185073527333132348710 ~1998
185074741111044844710 ~1997
1850762993701525999 ~1996
1850796233701592479 ~1996
185082517111049510310 ~1997
1850825633701651279 ~1996
1850830913701661839 ~1996
1850931593701863199 ~1996
1850942633701885279 ~1996
185099969148079975310 ~1997
185105567333190020710 ~1998
185109181111065508710 ~1997
1851174233702348479 ~1996
1851187793702375599 ~1996
1851231113702462239 ~1996
1851257513702515039 ~1996
Exponent Prime Factor Digits Year
185138333259193666310 ~1998
185139011148111208910 ~1997
1851423713702847439 ~1996
1851442313702884639 ~1996
185147099777617815910 ~1999
1851541433703082879 ~1996
185159213259222898310 ~1998
1851619793703239599 ~1996
185163427296261483310 ~1998
185168429148134743310 ~1997
185169007629574623910 ~1999
185174263185174263110 ~1997
185176777296282843310 ~1998
1851807713703615439 ~1996
185183077111109846310 ~1997
185183351148146680910 ~1997
1851836111962946276711 ~2000
1851848033703696079 ~1996
1851848993703697999 ~1996
1851892433703784879 ~1996
1851911513703823039 ~1996
185193737148154989710 ~1997
185194811777818206310 ~1999
185199701148159760910 ~1997
1852013633704027279 ~1996
Exponent Prime Factor Digits Year
1852044713704089439 ~1996
1852109393704218799 ~1996
185214877296343803310 ~1998
1852172993704345999 ~1996
1852176113704352239 ~1996
1852181513704363039 ~1996
1852202513704405039 ~1996
185220601111132360710 ~1997
1852293113704586239 ~1996
1852299113704598239 ~1996
185231821111139092710 ~1997
185233577111140146310 ~1997
185238667185238667110 ~1997
1852394513704789039 ~1996
1852396793704793599 ~1996
1852403393704806799 ~1996
1852405793704811599 ~1996
185248907333448032710 ~1998
185250553111150331910 ~1997
185251013111150607910 ~1997
185251519185251519110 ~1997
1852647713705295439 ~1996
1852746233705492479 ~1996
1852799771185791852911 ~1999
1852801313705602639 ~1996
Home
4.888.230 digits
e-mail
25-06-29