Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20844261341941688522683912 ~2019
20845949150341691898300712 ~2019
20848720763941697441527912 ~2019
20849725562341699451124712 ~2019
20850843956341701687912712 ~2019
20852436131941704872263912 ~2019
20853017774341706035548712 ~2019
20853960439141707920878312 ~2019
20854269530341708539060712 ~2019
20859712517941719425035912 ~2019
20860537175941721074351912 ~2019
20861624141941723248283912 ~2019
20862124769941724249539912 ~2019
20864487025141728974050312 ~2019
20870397779941740795559912 ~2019
20871362707141742725414312 ~2019
20871469207141742938414312 ~2019
2087574871817640...30824714 2026
20875977847141751955694312 ~2019
20876453432341752906864712 ~2019
20876887319941753774639912 ~2019
2087754221173507...91565714 2024
20878167227941756334455912 ~2019
20879806151941759612303912 ~2019
2088049903372630...78246314 2024
Exponent Prime Factor Dig. Year
20880797623141761595246312 ~2019
2088194325432380...30990314 2024
20884050230341768100460712 ~2019
20884075025941768150051912 ~2019
20884846141141769692282312 ~2019
20885726425141771452850312 ~2019
2088586458371750...21140715 2023
20888314961941776629923912 ~2019
20889512225941779024451912 ~2019
20890921040341781842080712 ~2019
20891527142341783054284712 ~2019
20891710609141783421218312 ~2019
20891721803941783443607912 ~2019
20892805087141785610174312 ~2019
20895203321941790406643912 ~2019
20897299187941794598375912 ~2019
20897569489141795138978312 ~2019
20898292964341796585928712 ~2019
20899210403941798420807912 ~2019
20899828681141799657362312 ~2019
20901313514341802627028712 ~2019
20904133343941808266687912 ~2019
20904834823141809669646312 ~2019
20909532755941819065511912 ~2019
20909615513941819231027912 ~2019
Exponent Prime Factor Dig. Year
20910023009941820046019912 ~2019
20910026165941820052331912 ~2019
20910551615941821103231912 ~2019
20910601694341821203388712 ~2019
20910844099141821688198312 ~2019
20910883895941821767791912 ~2019
20912140817941824281635912 ~2019
2091228412995228...32475114 2023
20913158617141826317234312 ~2019
20913206999941826413999912 ~2019
20913413501941826827003912 ~2019
2091381049331100...19475915 2025
20915709974341831419948712 ~2019
20916009373141832018746312 ~2019
20916411433141832822866312 ~2019
2091687899837028...43428914 2025
20917900249141835800498312 ~2019
20919145429141838290858312 ~2019
20920703276341841406552712 ~2019
20923934149141847868298312 ~2019
20931763265941863526531912 ~2019
20931768509941863537019912 ~2019
20932720747141865441494312 ~2019
20932890419941865780839912 ~2019
20935349333941870698667912 ~2019
Exponent Prime Factor Dig. Year
2093587318876866...05893714 2025
20936054948341872109896712 ~2019
20936999815141873999630312 ~2019
20938220801941876441603912 ~2019
20938243123141876486246312 ~2019
20938850591941877701183912 ~2019
20940197789941880395579912 ~2019
20941163545141882327090312 ~2019
20941273964341882547928712 ~2019
2094165608171465...25719114 2024
20942943458341885886916712 ~2019
20946580817941893161635912 ~2019
20947476167941894952335912 ~2019
20949146903941898293807912 ~2019
20951204233141902408466312 ~2019
20953077392341906154784712 ~2019
20953269035941906538071912 ~2019
20953948447141907896894312 ~2019
2095458571211253...55835915 2025
20955265751941910531503912 ~2019
20956064222341912128444712 ~2019
20956303076341912606152712 ~2019
20956535762341913071524712 ~2019
20957956633141915913266312 ~2019
20958300281941916600563912 ~2019
Home
5.366.787 digits
e-mail
26-02-08