Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18808399337937616798675912 ~2019
18808539326337617078652712 ~2019
18809723155137619446310312 ~2019
18810990023937621980047912 ~2019
18813306439137626612878312 ~2019
18813769892337627539784712 ~2019
18813837319137627674638312 ~2019
18814684967937629369935912 ~2019
18814964558337629929116712 ~2019
18818478620337636957240712 ~2019
18819219497937638438995912 ~2019
18819616645137639233290312 ~2019
18820487549937640975099912 ~2019
18820533749937641067499912 ~2019
18820653302337641306604712 ~2019
18822480044337644960088712 ~2019
18822522151137645044302312 ~2019
18822893191137645786382312 ~2019
18823918555137647837110312 ~2019
18824395387137648790774312 ~2019
18824675984337649351968712 ~2019
18825006014337650012028712 ~2019
18826915555137653831110312 ~2019
18827375441937654750883912 ~2019
18828308738337656617476712 ~2019
Exponent Prime Factor Dig. Year
18828709151937657418303912 ~2019
18831560681937663121363912 ~2019
18832416853137664833706312 ~2019
18833890265937667780531912 ~2019
18834628805937669257611912 ~2019
18835231819137670463638312 ~2019
18835681529937671363059912 ~2019
18835799639937671599279912 ~2019
1883665063971145...88937715 2023
18837319952337674639904712 ~2019
18837451073937674902147912 ~2019
18838020542337676041084712 ~2019
18839086208337678172416712 ~2019
18840101186337680202372712 ~2019
18840256976337680513952712 ~2019
18841832747937683665495912 ~2019
18842395025937684790051912 ~2019
18844469564337688939128712 ~2019
18844502804337689005608712 ~2019
18846381817137692763634312 ~2019
18846804581937693609163912 ~2019
18847333931937694667863912 ~2019
18852258791937704517583912 ~2019
1885315283291172...62063915 2025
1885451568475580...42671314 2023
Exponent Prime Factor Dig. Year
18854904193137709808386312 ~2019
18855020083137710040166312 ~2019
18855136921137710273842312 ~2019
18857467766337714935532712 ~2019
18858230923137716461846312 ~2019
18858314719137716629438312 ~2019
18862500737937725001475912 ~2019
18865231712337730463424712 ~2019
18865424726337730849452712 ~2019
18865741543137731483086312 ~2019
18867827156337735654312712 ~2019
18868450321137736900642312 ~2019
18872075111937744150223912 ~2019
18873415619937746831239912 ~2019
18873917618337747835236712 ~2019
1887421667772378...01390314 2024
18874469317137748938634312 ~2019
18874843429137749686858312 ~2019
18875166793137750333586312 ~2019
1887556271638758...00363314 2023
1887630201534643...95763914 2023
18876804458337753608916712 ~2019
18878730956337757461912712 ~2019
18880048379937760096759912 ~2019
18880960133937761920267912 ~2019
Exponent Prime Factor Dig. Year
18881085215937762170431912 ~2019
18882001145937764002291912 ~2019
18883931767137767863534312 ~2019
18884228750337768457500712 ~2019
1888543876373218...53344915 2025
18885582365937771164731912 ~2019
18888666749937777333499912 ~2019
18889363129137778726258312 ~2019
18891867019137783734038312 ~2019
18892478495937784956991912 ~2019
18896615447937793230895912 ~2019
18897222440337794444880712 ~2019
18898888073937797776147912 ~2019
18899804909937799609819912 ~2019
18900365329137800730658312 ~2019
18900411389937800822779912 ~2019
18903384505137806769010312 ~2019
18903594493137807188986312 ~2019
18904295126337808590252712 ~2019
18906194792337812389584712 ~2019
18907248205137814496410312 ~2019
18907316981937814633963912 ~2019
18908086226337816172452712 ~2019
18908617283937817234567912 ~2019
18909355507137818711014312 ~2019
Home
5.307.017 digits
e-mail
26-01-11