Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
43457091569986914183139912 ~2022
43457399822386914799644712 ~2022
43457664325186915328650312 ~2022
43458938587186917877174312 ~2022
43460590753186921181506312 ~2022
43460729423986921458847912 ~2022
43461207797986922415595912 ~2022
43466784203986933568407912 ~2022
43470583028386941166056712 ~2022
43477032809986954065619912 ~2022
43477273559986954547119912 ~2022
4348007935519043...05860914 2025
43481032652386962065304712 ~2022
4348334922431087...06075115 2025
43487929357186975858714312 ~2022
43491231176386982462352712 ~2022
43491475961986982951923912 ~2022
43493585504386987171008712 ~2022
43494038209186988076418312 ~2022
43494572327986989144655912 ~2022
43494832112386989664224712 ~2022
43499776976386999553952712 ~2022
43501839253187003678506312 ~2022
43502696671187005393342312 ~2022
43502864935187005729870312 ~2022
Exponent Prime Factor Dig. Year
43508162725187016325450312 ~2022
43508192335187016384670312 ~2022
43509577925987019155851912 ~2022
43510490873987020981747912 ~2022
43514385722387028771444712 ~2022
43516136273987032272547912 ~2022
43518599030387037198060712 ~2022
43521638069987043276139912 ~2022
43523328601187046657202312 ~2022
43526588567987053177135912 ~2022
43527946069187055892138312 ~2022
43536007586387072015172712 ~2022
43536659630387073319260712 ~2022
43537768880387075537760712 ~2022
43540565117987081130235912 ~2022
43541454008387082908016712 ~2022
43543189607987086379215912 ~2022
43546572737987093145475912 ~2022
43549009736387098019472712 ~2022
43550722379987101444759912 ~2022
43554384089987108768179912 ~2022
43561360664387122721328712 ~2022
43561853144387123706288712 ~2022
43566391136387132782272712 ~2022
43566589490387133178980712 ~2022
Exponent Prime Factor Dig. Year
43567485835187134971670312 ~2022
43568624125187137248250312 ~2022
43571105869187142211738312 ~2022
43573075819187146151638312 ~2022
43573468861187146937722312 ~2022
43575912728387151825456712 ~2022
43580464265987160928531912 ~2022
43582111760387164223520712 ~2022
43583466152387166932304712 ~2022
4358365755836363...03511914 2025
43586587346387173174692712 ~2022
43588752404387177504808712 ~2022
43588753517987177507035912 ~2022
43589185580387178371160712 ~2022
4359238070515231...84612114 2025
4359589928995205...52140715 2025
43599593432387199186864712 ~2022
4360242014271569...51372115 2025
43602879829187205759658312 ~2022
43609361738387218723476712 ~2022
43610012948387220025896712 ~2022
43613234911187226469822312 ~2022
43613247229187226494458312 ~2022
43614147308387228294616712 ~2022
43619124188387238248376712 ~2022
Exponent Prime Factor Dig. Year
43619317495187238634990312 ~2022
4362037554112835...01715115 2025
43620576191987241152383912 ~2022
43622963441987245926883912 ~2022
43623709945187247419890312 ~2022
43624296785987248593571912 ~2022
43624655453987249310907912 ~2022
43633841489987267682979912 ~2022
43636529738387273059476712 ~2022
43639933163987279866327912 ~2022
43643736914387287473828712 ~2022
43643805893987287611787912 ~2022
43647836203187295672406312 ~2022
4365125519776547...79655114 2025
43652509916387305019832712 ~2022
43653622727987307245455912 ~2022
4365578854971466...52699315 2025
43657304252387314608504712 ~2022
43657402615187314805230312 ~2022
43658022307187316044614312 ~2022
43659103715987318207431912 ~2022
43663978040387327956080712 ~2022
4366407064219431...58693714 2025
43665185720387330371440712 ~2022
43665370478387330740956712 ~2022
Home
5.247.179 digits
e-mail
25-12-14