Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17152057805934304115611912 ~2019
17152282873134304565746312 ~2019
17153603996334307207992712 ~2019
17155309735134310619470312 ~2019
17155972418334311944836712 ~2019
17157115861134314231722312 ~2019
1715747338613808...91714314 2023
17157775100334315550200712 ~2019
17158123130334316246260712 ~2019
1715825215499471...89504914 2026
1716029289613260...50259114 2024
1716036213892711...17946314 2024
17160461617134320923234312 ~2019
17163610028334327220056712 ~2019
17163742772334327485544712 ~2019
17164392937134328785874312 ~2019
1716507803393330...38576714 2024
17166732188334333464376712 ~2019
1716745504272472...26148914 2024
17167904983134335809966312 ~2019
17167985348334335970696712 ~2019
17169404095134338808190312 ~2019
17170128566334340257132712 ~2019
17170322561934340645123912 ~2019
17170820807934341641615912 ~2019
Exponent Prime Factor Dig. Year
17172177305934344354611912 ~2019
17172181052334344362104712 ~2019
17172667745934345335491912 ~2019
17176185655134352371310312 ~2019
17176513058334353026116712 ~2019
17178117349134356234698312 ~2019
17179581955134359163910312 ~2019
17180257370334360514740712 ~2019
17180417264334360834528712 ~2019
17183469433134366938866312 ~2019
17183860169934367720339912 ~2019
17184320660334368641320712 ~2019
17184675325134369350650312 ~2019
17184947306334369894612712 ~2019
17185362979134370725958312 ~2019
17186759012334373518024712 ~2019
17188291741134376583482312 ~2019
17188383818334376767636712 ~2019
17190240875934380481751912 ~2019
17191121573934382243147912 ~2019
17193410333934386820667912 ~2019
17195722811934391445623912 ~2019
17196306374334392612748712 ~2019
17196636577134393273154312 ~2019
17197239997134394479994312 ~2019
Exponent Prime Factor Dig. Year
17199436303134398872606312 ~2019
17199807200334399614400712 ~2019
17201462431134402924862312 ~2019
17203221197934406442395912 ~2019
17203885951134407771902312 ~2019
17204556209934409112419912 ~2019
17205449395134410898790312 ~2019
17206511155134413022310312 ~2019
17207095991934414191983912 ~2019
17209328701134418657402312 ~2019
17209701121134419402242312 ~2019
17209761383934419522767912 ~2019
17212093037934424186075912 ~2019
17216403071934432806143912 ~2019
1721659186674545...52808914 2023
17217432259134434864518312 ~2019
17218497289134436994578312 ~2019
17221345973934442691947912 ~2019
17221883791134443767582312 ~2019
17221933829934443867659912 ~2019
17224066415934448132831912 ~2019
17224938908334449877816712 ~2019
1722512650791791...56821714 2024
17226271447134452542894312 ~2019
17227244414334454488828712 ~2019
Exponent Prime Factor Dig. Year
1722824902211343...23723914 2024
17228542399134457084798312 ~2019
17229166627134458333254312 ~2019
17230484750334460969500712 ~2019
17230918943934461837887912 ~2019
17234321429934468642859912 ~2019
17234978120334469956240712 ~2019
17235660439134471320878312 ~2019
17235755534334471511068712 ~2019
17235892981134471785962312 ~2019
17237480576334474961152712 ~2019
1723802501391313...60591915 2023
17238213554334476427108712 ~2019
17239250977134478501954312 ~2019
17239615091934479230183912 ~2019
17240381033934480762067912 ~2019
17241127052334482254104712 ~2019
17241337418334482674836712 ~2019
17241648235134483296470312 ~2019
17241721766334483443532712 ~2019
17241812717934483625435912 ~2019
17242630859934485261719912 ~2019
1724282375634586...19175914 2023
17242958309934485916619912 ~2019
17245260224334490520448712 ~2019
Home
5.366.787 digits
e-mail
26-02-08