Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11781662089123563324178312 ~2018
11781675115370690050691912 ~2019
11781711367123563422734312 ~2018
11781752239123563504478312 ~2018
11783797824170702786944712 ~2019
11783947556323567895112712 ~2018
11784134755123568269510312 ~2018
11784170015923568340031912 ~2018
11785138844323570277688712 ~2018
11785327063123570654126312 ~2018
11786268761923572537523912 ~2018
11786524496323573048992712 ~2018
11787074941123574149882312 ~2018
11787509518170725057108712 ~2019
11787749198323575498396712 ~2018
11787784379923575568759912 ~2018
11788120541923576241083912 ~2018
11788602587923577205175912 ~2018
11788654831770731928990312 ~2019
11789715883123579431766312 ~2018
11789948144323579896288712 ~2018
11790021977923580043955912 ~2018
11790862607923581725215912 ~2018
11791782065923583564131912 ~2018
11792225447923584450895912 ~2018
Exponent Prime Factor Dig. Year
11792268493123584536986312 ~2018
11792498479123584996958312 ~2018
1179268699033962...28740914 2023
1179277189339453...96692915 2025
1179285367799835...67368714 2023
11792999603370757997619912 ~2019
11793864357770763186146312 ~2019
11794498460323588996920712 ~2018
11797427485770784564914312 ~2019
11797759907923595519815912 ~2018
11797995871123595991742312 ~2018
11798000378323596000756712 ~2018
11798089379923596178759912 ~2018
11798111093923596222187912 ~2018
11798394131923596788263912 ~2018
11798516761370791100567912 ~2019
11799171947923598343895912 ~2018
11799606145123599212290312 ~2018
11799945857923599891715912 ~2018
11799957961123599915922312 ~2018
11800736701123601473402312 ~2018
11802722510323605445020712 ~2018
11802749657923605499315912 ~2018
11802908725123605817450312 ~2018
11802918665923605837331912 ~2018
Exponent Prime Factor Dig. Year
11803542482323607084964712 ~2018
11804234240323608468480712 ~2018
11804978568170829871408712 ~2019
11805339049123610678098312 ~2018
11805980231370835881387912 ~2019
11806957243123613914486312 ~2018
11809143452323618286904712 ~2018
11809177586323618355172712 ~2018
11809295429923618590859912 ~2018
11810024978323620049956712 ~2018
11810175119370861050715912 ~2019
11810259407923620518815912 ~2018
11810482747123620965494312 ~2018
1181177424014606...53639114 2023
11812986001123625972002312 ~2018
11813216906323626433812712 ~2018
11813416615123626833230312 ~2018
11813470501123626941002312 ~2018
11813904503923627809007912 ~2018
11815223389123630446778312 ~2018
11816143076323632286152712 ~2018
11816330099923632660199912 ~2018
11816477888323632955776712 ~2018
11817544058323635088116712 ~2018
11817772802323635545604712 ~2018
Exponent Prime Factor Dig. Year
11819167210170915003260712 ~2019
11820248915923640497831912 ~2018
11820505201123641010402312 ~2018
11821378709923642757419912 ~2018
11821801833770930811002312 ~2019
11822391989923644783979912 ~2018
1182281580077093...80420114 2025
11823497933923646995867912 ~2018
11824439263123648878526312 ~2018
11824951538323649903076712 ~2018
11824966145923649932291912 ~2018
11825864858323651729716712 ~2018
11828229907123656459814312 ~2018
11828299424323656598848712 ~2018
11830250198323660500396712 ~2018
11830430077123660860154312 ~2018
11830680740323661361480712 ~2018
11831126798323662253596712 ~2018
11832007403923664014807912 ~2018
11832938326170997629956712 ~2019
11833272331770999633990312 ~2019
11833641312171001847872712 ~2019
11833851659923667703319912 ~2018
11835668384323671336768712 ~2018
1183630480992461...00459314 2024
Home
5.366.787 digits
e-mail
26-02-08