Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17245544936334491089872712 ~2019
1724674318792104...68923914 2024
17246753792334493507584712 ~2019
17247621716334495243432712 ~2019
17247971597934495943195912 ~2019
1724798065797206...88706315 2025
17248835707134497671414312 ~2019
17249980793934499961587912 ~2019
17250148154334500296308712 ~2019
17250349586334500699172712 ~2019
17250449831934500899663912 ~2019
17251087853934502175707912 ~2019
17253605243934507210487912 ~2019
17253697721934507395443912 ~2019
17254065383934508130767912 ~2019
17254850909934509701819912 ~2019
1725522506278006...29092914 2025
1725650640434555...90735314 2024
17256844819134513689638312 ~2019
17256983285934513966571912 ~2019
17258821064334517642128712 ~2019
17260287065934520574131912 ~2019
17260338482334520676964712 ~2019
1726050663678699...44896914 2025
17261650484334523300968712 ~2019
Exponent Prime Factor Dig. Year
17262511939134525023878312 ~2019
1726392415735148...37068715 2023
17265567221934531134443912 ~2019
17268332411934536664823912 ~2019
17268395198334536790396712 ~2019
17268877229934537754459912 ~2019
17270110093134540220186312 ~2019
17270471945934540943891912 ~2019
17271423961134542847922312 ~2019
17272803331134545606662312 ~2019
17273880785934547761571912 ~2019
17274513602334549027204712 ~2019
17274578438334549156876712 ~2019
17276264561934552529123912 ~2019
17277601952334555203904712 ~2019
17278632065934557264131912 ~2019
17279316367134558632734312 ~2019
17280387245934560774491912 ~2019
17280715496334561430992712 ~2019
17281261772334562523544712 ~2019
17283335855934566671711912 ~2019
1728609059931360...97689716 2024
17286526181934573052363912 ~2019
17286893240334573786480712 ~2019
17286971459934573942919912 ~2019
Exponent Prime Factor Dig. Year
17287706695134575413390312 ~2019
17288085302334576170604712 ~2019
1728854178972984...29022315 2023
17289665651934579331303912 ~2019
17289921613134579843226312 ~2019
17290875674334581751348712 ~2019
17295113633934590227267912 ~2019
17296565126334593130252712 ~2019
17297369335134594738670312 ~2019
17299275296334598550592712 ~2019
17300250349134600500698312 ~2019
17301468673134602937346312 ~2019
17301878215134603756430312 ~2019
17302692433134605384866312 ~2019
17303122225134606244450312 ~2019
17304198566334608397132712 ~2019
17305845398334611690796712 ~2019
17306128142334612256284712 ~2019
17306357762334612715524712 ~2019
17306921995134613843990312 ~2019
17307355208334614710416712 ~2019
17308526761134617053522312 ~2019
17308637600334617275200712 ~2019
17309631377934619262755912 ~2019
1731150468797063...12663314 2023
Exponent Prime Factor Dig. Year
17311573903134623147806312 ~2019
17313596696334627193392712 ~2019
17314362625134628725250312 ~2019
1731471256733739...14536914 2024
17316574021134633148042312 ~2019
17317393447134634786894312 ~2019
17319034249134638068498312 ~2019
17319103885134638207770312 ~2019
17319208460334638416920712 ~2019
1732034005431402...43983115 2025
17320384286334640768572712 ~2019
17324649913134649299826312 ~2019
17325476765934650953531912 ~2019
17326708976334653417952712 ~2019
17326824728334653649456712 ~2019
17328326257134656652514312 ~2019
17328373931934656747863912 ~2019
17329521869934659043739912 ~2019
17329743409134659486818312 ~2019
17329914071934659828143912 ~2019
17330471719134660943438312 ~2019
17330638441134661276882312 ~2019
1733075368919462...14248714 2023
17331127538334662255076712 ~2019
17331395174334662790348712 ~2019
Home
5.366.787 digits
e-mail
26-02-08