Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
42167266573184334533146312 ~2022
42168876065984337752131912 ~2022
4216971881477843...99534314 2025
42170587565984341175131912 ~2022
42170688481184341376962312 ~2022
42176190355184352380710312 ~2022
42176362217984352724435912 ~2022
42188939051984377878103912 ~2022
42191269861184382539722312 ~2022
42191747065184383494130312 ~2022
42194581421984389162843912 ~2022
42195233102384390466204712 ~2022
42195422462384390844924712 ~2022
42200661002384401322004712 ~2022
42209634224384419268448712 ~2022
42215204429984430408859912 ~2022
4221641205613976...56846315 2025
42227482709984454965419912 ~2022
42229021735184458043470312 ~2022
42231158888384462317776712 ~2022
42231321971984462643943912 ~2022
42234606029984469212059912 ~2022
4224034330973674...79439115 2025
42241528181984483056363912 ~2022
42243164498384486328996712 ~2022
Exponent Prime Factor Dig. Year
42245705299184491410598312 ~2022
42246607109984493214219912 ~2022
42251872297184503744594312 ~2022
42253121083184506242166312 ~2022
4225388530436169...54427914 2025
42254911523984509823047912 ~2022
42258958904384517917808712 ~2022
42259756178384519512356712 ~2022
42260697569984521395139912 ~2022
42261725197184523450394312 ~2022
42261748238384523496476712 ~2022
42262634545184525269090312 ~2022
42265561994384531123988712 ~2022
42269929718384539859436712 ~2022
42273099953984546199907912 ~2022
42277492742384554985484712 ~2022
42279656393984559312787912 ~2022
42284538482384569076964712 ~2022
42286528459184573056918312 ~2022
42286885664384573771328712 ~2022
42290982536384581965072712 ~2022
42292283515184584567030312 ~2022
4229417830317190...11527114 2025
42294228793184588457586312 ~2022
4229732142318882...98851114 2025
Exponent Prime Factor Dig. Year
42299541605984599083211912 ~2022
42308639213984617278427912 ~2022
42310418132384620836264712 ~2022
42315666269984631332539912 ~2022
42318370031984636740063912 ~2022
42324445742384648891484712 ~2022
4232468012216687...59291914 2025
42325084193984650168387912 ~2022
42328254965984656509931912 ~2022
4233260178236857...88732714 2025
42332761334384665522668712 ~2022
42334112023184668224046312 ~2022
4233635174411515...24387915 2025
42337800893984675601787912 ~2022
42338272526384676545052712 ~2022
4233950757318129...54035314 2025
4234057837999823...84136914 2025
42344344136384688688272712 ~2022
42352683644384705367288712 ~2022
42356110381184712220762312 ~2022
42358900874384717801748712 ~2022
42359854598384719709196712 ~2022
42359940218384719880436712 ~2022
42362232217184724464434312 ~2022
42362404955984724809911912 ~2022
Exponent Prime Factor Dig. Year
4236252565337032...58447914 2025
4236280250691558...22539315 2025
42363762068384727524136712 ~2022
42365065514384730131028712 ~2022
42371194355984742388711912 ~2022
42372253976384744507952712 ~2022
4237234679111694...16440115 2025
42375477677984750955355912 ~2022
42376017403184752034806312 ~2022
42376131338384752262676712 ~2022
42380642029184761284058312 ~2022
42382290329984764580659912 ~2022
42382593032384765186064712 ~2022
42383479310384766958620712 ~2022
42389970623984779941247912 ~2022
42390341978384780683956712 ~2022
42393557213984787114427912 ~2022
42393562001984787124003912 ~2022
42394625177984789250355912 ~2022
42399399151184798798302312 ~2022
42399757001984799514003912 ~2022
42400648868384801297736712 ~2022
4240159366211899...60620915 2025
42408634531184817269062312 ~2022
4241260497775683...67011914 2025
Home
5.187.277 digits
e-mail
25-11-17