Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
42413000978384826001956712 ~2022
42418755233984837510467912 ~2022
42425944345184851888690312 ~2022
42426458893184852917786312 ~2022
42426825413984853650827912 ~2022
42427649468384855298936712 ~2022
4243032699613869...20443315 2025
42430430549984860861099912 ~2022
42431019175184862038350312 ~2022
42437069087984874138175912 ~2022
42437998201184875996402312 ~2022
42439690699184879381398312 ~2022
42443798519984887597039912 ~2022
4244466202096791...23344114 2025
42446593987184893187974312 ~2022
42447039179984894078359912 ~2022
42448253125184896506250312 ~2022
4245266928731621...67748715 2025
42453293267984906586535912 ~2022
4246195014977023...47603915 2025
42462129320384924258640712 ~2022
42464241164384928482328712 ~2022
42464517623984929035247912 ~2022
42464567282384929134564712 ~2022
42469622531984939245063912 ~2022
Exponent Prime Factor Dig. Year
42471350792384942701584712 ~2022
42471767228384943534456712 ~2022
42473144761184946289522312 ~2022
42474239911184948479822312 ~2022
42479511761984959023523912 ~2022
4248200100736032...43036714 2025
42482071321184964142642312 ~2022
42482372108384964744216712 ~2022
42483094339184966188678312 ~2022
42485321189984970642379912 ~2022
4248670821977392...30227914 2025
42488871643184977743286312 ~2022
4249163059091113...14815915 2025
42492261853184984523706312 ~2022
42493836497984987672995912 ~2022
42494895349184989790698312 ~2022
42497625818384995251636712 ~2022
42498514513184997029026312 ~2022
42498918769184997837538312 ~2022
42498930271184997860542312 ~2022
42499141399184998282798312 ~2022
42499502135984999004271912 ~2022
42500286797985000573595912 ~2022
42500734861185001469722312 ~2022
42502457315985004914631912 ~2022
Exponent Prime Factor Dig. Year
4250379404638500...09260114 2025
42504610829985009221659912 ~2022
42506018312385012036624712 ~2022
42512520583185025041166312 ~2022
42515909077185031818154312 ~2022
42518100527985036201055912 ~2022
42519096890385038193780712 ~2022
42521822222385043644444712 ~2022
42528885025185057770050312 ~2022
42532200395985064400791912 ~2022
42534485461185068970922312 ~2022
42540202345185080404690312 ~2022
4254207576779784...26571114 2025
4254513998877564...99908715 2025
42551669749185103339498312 ~2022
42558073753185116147506312 ~2022
42561407072385122814144712 ~2022
42561654530385123309060712 ~2022
42569621579985139243159912 ~2022
42571128266385142256532712 ~2022
42576221275185152442550312 ~2022
4257626851936429...64143115 2025
42582902893185165805786312 ~2022
42585482029185170964058312 ~2022
42587464675185174929350312 ~2022
Exponent Prime Factor Dig. Year
42590864609985181729219912 ~2022
42596284439985192568879912 ~2022
42600806347185201612694312 ~2022
42600844531185201689062312 ~2022
42601123769985202247539912 ~2022
42605331242385210662484712 ~2022
42606967658385213935316712 ~2022
42609701275185219402550312 ~2022
42611688041985223376083912 ~2022
42615432659985230865319912 ~2022
42618453121185236906242312 ~2022
42618654788385237309576712 ~2022
4262258637171125...02128915 2025
42623056391985246112783912 ~2022
42624175466385248350932712 ~2022
42625624861185251249722312 ~2022
42630539096385261078192712 ~2022
42631395872385262791744712 ~2022
42631810895985263621791912 ~2022
42633384818385266769636712 ~2022
42643536902385287073804712 ~2022
4264561312817079...79264714 2025
42647692459185295384918312 ~2022
42656554580385313109160712 ~2022
42657881558385315763116712 ~2022
Home
5.187.277 digits
e-mail
25-11-17