Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14107713283128215426566312 ~2018
14108167219128216334438312 ~2018
14109166855128218333710312 ~2018
14109566755128219133510312 ~2018
14109588272328219176544712 ~2018
14110666799384664000795912 ~2019
14111115703784666694222312 ~2019
14111468519928222937039912 ~2018
14111752727928223505455912 ~2018
14111811133128223622266312 ~2018
14112549437928225098875912 ~2018
14112672569928225345139912 ~2018
14113532351928227064703912 ~2018
14114026817928228053635912 ~2018
14114708813928229417627912 ~2018
14115316868328230633736712 ~2018
14117828863128235657726312 ~2018
14118455072328236910144712 ~2018
14118535139928237070279912 ~2018
14120330315928240660631912 ~2018
14120489569128240979138312 ~2018
14120505685128241011370312 ~2018
14120913683928241827367912 ~2018
14122067981928244135963912 ~2018
14122217179128244434358312 ~2018
Exponent Prime Factor Dig. Year
14122237235928244474471912 ~2018
14122729841928245459683912 ~2018
14123855925784743135554312 ~2019
14124847693128249695386312 ~2018
14124874327128249748654312 ~2018
14125544576328251089152712 ~2018
14125732345128251464690312 ~2018
14126049110328252098220712 ~2018
14126184533928252369067912 ~2018
14126994778184761968668712 ~2019
14127167405928254334811912 ~2018
14127317975928254635951912 ~2018
14129061841128258123682312 ~2018
14129208640184775251840712 ~2019
14129409019128258818038312 ~2018
14130104900328260209800712 ~2018
14131285183128262570366312 ~2018
14131583095128263166190312 ~2018
14131605505384789633031912 ~2019
14132657651928265315303912 ~2018
14132889530328265779060712 ~2018
14134344133128268688266312 ~2018
14134486849128268973698312 ~2018
14134764301128269528602312 ~2018
14135065352328270130704712 ~2018
Exponent Prime Factor Dig. Year
14135089910328270179820712 ~2018
14135164069128270328138312 ~2018
14135562601128271125202312 ~2018
14136570827928273141655912 ~2018
14136795482328273590964712 ~2018
14137391432328274782864712 ~2018
14137548089928275096179912 ~2018
14138671724328277343448712 ~2018
14138686697928277373395912 ~2018
14140604504328281209008712 ~2018
14140660000184843960000712 ~2019
14141615311128283230622312 ~2018
14142279283128284558566312 ~2018
14144131493928288262987912 ~2018
1414522719716902...72184914 2025
14146746203928293492407912 ~2018
14147904139128295808278312 ~2018
14148010118328296020236712 ~2018
14148051521928296103043912 ~2018
14148731563128297463126312 ~2018
14149323926328298647852712 ~2018
14149599617928299199235912 ~2018
14151043469928302086939912 ~2018
14152755707928305511415912 ~2018
14153526644328307053288712 ~2018
Exponent Prime Factor Dig. Year
14154262813128308525626312 ~2018
14155356140328310712280712 ~2018
14155510484328311020968712 ~2018
14157224947128314449894312 ~2018
1415798805311078...96462315 2025
14159307034184955842204712 ~2019
1416192395573937...59684714 2023
14162920499928325840999912 ~2018
14163327721128326655442312 ~2018
14163913373928327826747912 ~2018
1416435680513130...39271115 2023
14164368668328328737336712 ~2018
14164518451128329036902312 ~2018
14165060945928330121891912 ~2018
14165511692328331023384712 ~2018
14166488771928332977543912 ~2018
1416729550791337...59457715 2025
14167560443928335120887912 ~2018
14167860715385007164291912 ~2019
14168061464328336122928712 ~2018
14168700853128337401706312 ~2018
14168754265128337508530312 ~2018
14169240488328338480976712 ~2018
14170499012328340998024712 ~2018
14170571339928341142679912 ~2018
Home
5.307.017 digits
e-mail
26-01-11