Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10840991408321681982816712 ~2017
10841217656321682435312712 ~2017
10841308103921682616207912 ~2017
10842049745921684099491912 ~2017
10842717787121685435574312 ~2017
10843157969921686315939912 ~2017
10843330361921686660723912 ~2017
10843553051365061318307912 ~2018
10843701219765062207318312 ~2018
10843934088165063604528712 ~2018
10844980741365069884447912 ~2018
10845547280321691094560712 ~2017
10845721739921691443479912 ~2017
10845922357121691844714312 ~2017
10846155392321692310784712 ~2017
10846368230321692736460712 ~2017
10846640494165079842964712 ~2018
10846948421921693896843912 ~2017
10848571349921697142699912 ~2017
10849561423121699122846312 ~2017
10850676314321701352628712 ~2017
10851425450321702850900712 ~2017
10852003388321704006776712 ~2017
10852074367365112446203912 ~2018
10852177007921704354015912 ~2017
Exponent Prime Factor Dig. Year
10852338817786818710541712 ~2019
10852804885186822439080912 ~2019
10852996013921705992027912 ~2017
10853018180321706036360712 ~2017
1085326743112682...89679315 2025
10853370353921706740707912 ~2017
10854004315121708008630312 ~2017
10854058700321708117400712 ~2017
10854143582321708287164712 ~2017
10855110626321710221252712 ~2017
10855317431986842539455312 ~2019
10855720418321711440836712 ~2017
10855760074165134560444712 ~2018
10856223211121712446422312 ~2017
1085640919491231...27016715 2025
10856427449921712854899912 ~2017
10856713016321713426032712 ~2017
10857019736321714039472712 ~2017
10857216056321714432112712 ~2017
10858504772321717009544712 ~2017
10858592575121717185150312 ~2017
10858867268321717734536712 ~2017
10860076718321720153436712 ~2017
10860314191765161885150312 ~2018
10860775235921721550471912 ~2017
Exponent Prime Factor Dig. Year
10860919611765165517670312 ~2018
10860964309121721928618312 ~2017
10861828225186894625800912 ~2019
10862049877121724099754312 ~2017
10862364253121724728506312 ~2017
10862833717765177002306312 ~2018
10863189524321726379048712 ~2017
10863429367121726858734312 ~2017
10864223815121728447630312 ~2017
10864663552786917308421712 ~2019
10864698899365188193395912 ~2018
10865713706321731427412712 ~2017
10866570187121733140374312 ~2017
10867459133921734918267912 ~2017
10868164294786945314357712 ~2019
10868203538321736407076712 ~2017
10868352367121736704734312 ~2017
10868965334321737930668712 ~2017
10869149227121738298454312 ~2017
10869976979986959815839312 ~2019
10870186833765221121002312 ~2018
10870941230321741882460712 ~2017
10872392813921744785627912 ~2017
10872395402321744790804712 ~2017
10872792449921745584899912 ~2017
Exponent Prime Factor Dig. Year
10873340143365240040859912 ~2018
10875520160321751040320712 ~2017
10875870041921751740083912 ~2017
10876184905121752369810312 ~2017
10877660905787021287245712 ~2019
10877869591121755739182312 ~2017
10877913272321755826544712 ~2017
10878356900321756713800712 ~2017
10878528020321757056040712 ~2017
10878756941921757513883912 ~2017
10879194008321758388016712 ~2017
10880248951121760497902312 ~2017
10880836631921761673263912 ~2017
10881429968321762859936712 ~2017
10881478181921762956363912 ~2017
10881542723921763085447912 ~2017
10882141995765292851974312 ~2018
10882269217121764538434312 ~2017
10882636067921765272135912 ~2017
10883031859365298191155912 ~2018
1088433267772176...35540114 2024
10884600746987076805975312 ~2019
10884677545121769355090312 ~2017
10884710803121769421606312 ~2017
10885967669921771935339912 ~2017
Home
5.366.787 digits
e-mail
26-02-08