Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
29386652719158773305438312 ~2021
29387515376358775030752712 ~2021
29388382633158776765266312 ~2021
29390819840358781639680712 ~2021
29395013378358790026756712 ~2021
29395841564358791683128712 ~2021
29396486867958792973735912 ~2021
2939755962313292...77787314 2024
29398644269958797288539912 ~2021
29400083072358800166144712 ~2021
29401065371958802130743912 ~2021
2940240619311367...97915116 2025
2940245222036880...19550314 2023
29402820041958805640083912 ~2021
29402965637958805931275912 ~2021
2940496570213528...84252114 2024
29405241991158810483982312 ~2021
29408009681958816019363912 ~2021
29408944892358817889784712 ~2021
29410314379158820628758312 ~2021
2941045189691476...52243915 2025
29412353501958824707003912 ~2021
29413305121158826610242312 ~2021
29416182209958832364419912 ~2021
29416211993958832423987912 ~2021
Exponent Prime Factor Dig. Year
2942321836271818...48148715 2023
2942371063633118...27447914 2024
29424259277958848518555912 ~2021
2942478991315649...63315314 2025
2942620793572989...62671315 2025
29427482933958854965867912 ~2021
29430087169158860174338312 ~2021
29434710806358869421612712 ~2021
29435841572358871683144712 ~2021
29437325501958874651003912 ~2021
29438313427158876626854312 ~2021
29446072112358892144224712 ~2021
29447885006358895770012712 ~2021
29448202586358896405172712 ~2021
29448505867158897011734312 ~2021
2945049093433828...21459114 2024
29450948827158901897654312 ~2021
2945146655279012...65126314 2025
2945275519872650...67883114 2024
29458764343158917528686312 ~2021
29459478548358918957096712 ~2021
29460277273158920554546312 ~2021
2946543007632651...06867114 2024
29465954849958931909699912 ~2021
29466360044358932720088712 ~2021
Exponent Prime Factor Dig. Year
29468259431958936518863912 ~2021
29468790133158937580266312 ~2021
2946922690631249...08271315 2025
29469591739158939183478312 ~2021
29470503593958941007187912 ~2021
29470719935958941439871912 ~2021
29470873103958941746207912 ~2021
2947194263872499...57617715 2025
29476034909958952069819912 ~2021
29476254815958952509631912 ~2021
29476576538358953153076712 ~2021
29478857815158957715630312 ~2021
29479925807958959851615912 ~2021
29480680784358961361568712 ~2021
29484892535958969785071912 ~2021
29485117579158970235158312 ~2021
2949021323771356...08934314 2024
2949492051014424...76515114 2023
29495819329158991638658312 ~2021
2949587885111940...84023915 2025
29497181423958994362847912 ~2021
29497315226358994630452712 ~2021
29497607593158995215186312 ~2021
29498760419958997520839912 ~2021
29500038439159000076878312 ~2021
Exponent Prime Factor Dig. Year
29502254195959004508391912 ~2021
29502579715159005159430312 ~2021
29504792377159009584754312 ~2021
29504885972359009771944712 ~2021
2950533005832419...64780714 2024
2950584668776314...91167914 2023
29506605815959013211631912 ~2021
2950866547915016...31447114 2023
29509767245959019534491912 ~2021
2951048837271416...41889714 2024
2951241315592360...52472114 2024
29512844521159025689042312 ~2021
29512877225959025754451912 ~2021
2951361673072656...05763114 2024
29514246758359028493516712 ~2021
29520374972359040749944712 ~2021
29523437336359046874672712 ~2021
29531074249159062148498312 ~2021
29532123785959064247571912 ~2021
29534258987959068517975912 ~2021
29535273302359070546604712 ~2021
29536097179159072194358312 ~2021
2953753686372835...38915314 2024
29547196967959094393935912 ~2021
29549179967959098359935912 ~2021
Home
5.187.277 digits
e-mail
25-11-17