Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17699038562335398077124712 ~2019
1769955144892654...17335114 2024
17700982763935401965527912 ~2019
17701802351935403604703912 ~2019
17702092037935404184075912 ~2019
17702449793935404899587912 ~2019
17703315758335406631516712 ~2019
17703528017935407056035912 ~2019
17703856651135407713302312 ~2019
17704172263135408344526312 ~2019
17705398871935410797743912 ~2019
1770651070137790...08572114 2025
17706916502335413833004712 ~2019
17707800584335415601168712 ~2019
17707875746335415751492712 ~2019
17709457079935418914159912 ~2019
17709933353935419866707912 ~2019
1770994497893081...26328714 2024
17713731884335427463768712 ~2019
17715350087935430700175912 ~2019
17716409633935432819267912 ~2019
17717170531135434341062312 ~2019
17718583967935437167935912 ~2019
17719007384335438014768712 ~2019
17719328216335438656432712 ~2019
Exponent Prime Factor Dig. Year
17720315605135440631210312 ~2019
17720748446335441496892712 ~2019
17722077983935444155967912 ~2019
1772245646411219...47300915 2025
17723414123935446828247912 ~2019
17725385689135450771378312 ~2019
17725456457935450912915912 ~2019
17727782858335455565716712 ~2019
17728027163935456054327912 ~2019
17729112979135458225958312 ~2019
17730815227135461630454312 ~2019
17731130485135462260970312 ~2019
17731402207135462804414312 ~2019
17731627099135463254198312 ~2019
17734778084335469556168712 ~2019
17734856330335469712660712 ~2019
1773492726797129...61695914 2025
17735271721135470543442312 ~2019
17735600083135471200166312 ~2019
17736774817135473549634312 ~2019
17738375753935476751507912 ~2019
17738884280335477768560712 ~2019
17739128575135478257150312 ~2019
17739665557135479331114312 ~2019
17742225709135484451418312 ~2019
Exponent Prime Factor Dig. Year
17742805235935485610471912 ~2019
17747577353935495154707912 ~2019
17748258767935496517535912 ~2019
17748623927935497247855912 ~2019
17750841620335501683240712 ~2019
17756385335935512770671912 ~2019
17756848393135513696786312 ~2019
17757134369935514268739912 ~2019
17757147353935514294707912 ~2019
1775718039493267...92661714 2024
17757990557935515981115912 ~2019
17758748903935517497807912 ~2019
17759014772335518029544712 ~2019
17761747861135523495722312 ~2019
17761918037935523836075912 ~2019
17762172776335524345552712 ~2019
17762337013135524674026312 ~2019
17762939552335525879104712 ~2019
17767472419135534944838312 ~2019
17769715778335539431556712 ~2019
17770327183135540654366312 ~2019
17771668883935543337767912 ~2019
17771693621935543387243912 ~2019
17775208451935550416903912 ~2019
17777534804335555069608712 ~2019
Exponent Prime Factor Dig. Year
17777957186335555914372712 ~2019
17778978931135557957862312 ~2019
17780076049135560152098312 ~2019
17781633719935563267439912 ~2019
17781756509935563513019912 ~2019
1778203569791013...47803115 2025
17782494164335564988328712 ~2019
17783171629135566343258312 ~2019
17784350029135568700058312 ~2019
17787504872335575009744712 ~2019
17789870897935579741795912 ~2019
17790636404335581272808712 ~2019
17791682035135583364070312 ~2019
1779404695438274...37495115 2023
17794360781935588721563912 ~2019
17794440887935588881775912 ~2019
17795177852335590355704712 ~2019
17795535175135591070350312 ~2019
17796519344335593038688712 ~2019
1779669668332715...38715915 2025
17798460811135596921622312 ~2019
17798974007935597948015912 ~2019
17799156899935598313799912 ~2019
1779928332893524...99122314 2023
1779963054678543...62416114 2025
Home
5.187.277 digits
e-mail
25-11-17