Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17595792083935191584167912 ~2019
17596897945135193795890312 ~2019
17597971643935195943287912 ~2019
1759809725991830...15029714 2024
1759955537512323...95132115 2025
17600363653135200727306312 ~2019
17600708983135201417966312 ~2019
17600741168335201482336712 ~2019
17601294254335202588508712 ~2019
17602689329935205378659912 ~2019
17602969789135205939578312 ~2019
17603913767935207827535912 ~2019
17604843535135209687070312 ~2019
17606522773135213045546312 ~2019
17606958901135213917802312 ~2019
17607674987935215349975912 ~2019
17608256471935216512943912 ~2019
17608387826335216775652712 ~2019
17610252283135220504566312 ~2019
17611963429135223926858312 ~2019
17611976023135223952046312 ~2019
17612437633135224875266312 ~2019
1761403889811514...45236714 2024
17614082093935228164187912 ~2019
17614721531935229443063912 ~2019
Exponent Prime Factor Dig. Year
17614907459935229814919912 ~2019
17615821763935231643527912 ~2019
17616227834335232455668712 ~2019
17617005967135234011934312 ~2019
17618548151935237096303912 ~2019
17620003238335240006476712 ~2019
17620329235135240658470312 ~2019
1762145931317506...67380714 2025
1762349406497317...57464915 2025
17624960537935249921075912 ~2019
17626295119135252590238312 ~2019
17627247032335254494064712 ~2019
1762786430631124...56102317 2023
17629227223135258454446312 ~2019
17629328365135258656730312 ~2019
17631010196335262020392712 ~2019
17632203685135264407370312 ~2019
1763358122392151...09315914 2024
17633654816335267309632712 ~2019
17636441977135272883954312 ~2019
17636569205935273138411912 ~2019
17637183311935274366623912 ~2019
17638770599935277541199912 ~2019
17640074347135280148694312 ~2019
17645277571135290555142312 ~2019
Exponent Prime Factor Dig. Year
17646659815135293319630312 ~2019
17646998393935293996787912 ~2019
17647426159135294852318312 ~2019
17647739197135295478394312 ~2019
17647772645935295545291912 ~2019
17649024197935298048395912 ~2019
17649142127935298284255912 ~2019
17650802419135301604838312 ~2019
17650852393135301704786312 ~2019
17651272925935302545851912 ~2019
17653401653935306803307912 ~2019
17653631051935307262103912 ~2019
17654058595135308117190312 ~2019
17654635297135309270594312 ~2019
17656246532335312493064712 ~2019
17658052921135316105842312 ~2019
17658484291135316968582312 ~2019
17658671953135317343906312 ~2019
17660025155935320050311912 ~2019
17661587663935323175327912 ~2019
17661800537935323601075912 ~2019
17662227673135324455346312 ~2019
17663107685935326215371912 ~2019
17665913875135331827750312 ~2019
17667870176335335740352712 ~2019
Exponent Prime Factor Dig. Year
17669220395935338440791912 ~2019
17673028225135346056450312 ~2019
17675058626335350117252712 ~2019
17675306389135350612778312 ~2019
17675933041135351866082312 ~2019
17678394086335356788172712 ~2019
17678571872335357143744712 ~2019
17681371682335362743364712 ~2019
17682437185135364874370312 ~2019
17685610739935371221479912 ~2019
17686037363935372074727912 ~2019
17686321063135372642126312 ~2019
17686581941935373163883912 ~2019
17687577121135375154242312 ~2019
17687714455135375428910312 ~2019
17688004601935376009203912 ~2019
17689865456335379730912712 ~2019
17692163203135384326406312 ~2019
17694777014335389554028712 ~2019
17695708057135391416114312 ~2019
17697193823935394387647912 ~2019
17697388877935394777755912 ~2019
1769748523996923...58488915 2025
17698493113135396986226312 ~2019
17698862618335397725236712 ~2019
Home
5.187.277 digits
e-mail
25-11-17