Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10988465851121976931702312 ~2017
10988703223121977406446312 ~2017
10988714221765932285330312 ~2018
10988946619121977893238312 ~2017
10989114007121978228014312 ~2017
10989167461121978334922312 ~2017
10990112387365940674323912 ~2018
10990441822787923534581712 ~2019
10990547270987924378167312 ~2019
10991680819365950084915912 ~2018
10993097171921986194343912 ~2017
1099382039292440...27223914 2024
10994453889765966723338312 ~2018
10994595221921989190443912 ~2017
10994793017987958344143312 ~2019
10995396533921990793067912 ~2017
10996250047121992500094312 ~2017
10997102456321994204912712 ~2017
10998141949121996283898312 ~2017
10998704426321997408852712 ~2017
10998819226787990553813712 ~2019
10998959072987991672583312 ~2019
1099905088091819...57008715 2024
10999140011921998280023912 ~2017
10999650590321999301180712 ~2017
Exponent Prime Factor Dig. Year
11000601925122001203850312 ~2017
1100091443212992...25531314 2024
11001552031122003104062312 ~2017
11002102927766012617566312 ~2018
1100273579693850...28915114 2023
1100362428371103...65511116 2025
11003873369922007746739912 ~2017
11004294421122008588842312 ~2017
11004319257766025915546312 ~2018
11004533927922009067855912 ~2017
11004976754322009953508712 ~2017
11005795393122011590786312 ~2017
1100592821212729...96600914 2024
11005933592322011867184712 ~2017
11006400140322012800280712 ~2017
11006426599122012853198312 ~2017
11006520536322013041072712 ~2017
11006636821122013273642312 ~2017
11006994593922013989187912 ~2017
11007032384322014064768712 ~2017
11007306617922014613235912 ~2017
11008320668322016641336712 ~2017
11009910652188079285216912 ~2019
11011116929922022233859912 ~2017
11012928283122025856566312 ~2017
Exponent Prime Factor Dig. Year
11013261113922026522227912 ~2017
11013529846166081179076712 ~2018
11013609235122027218470312 ~2017
1101452647311844...18532716 2025
11014760180322029520360712 ~2017
11017350374322034700748712 ~2017
11018034649122036069298312 ~2017
11018538326322037076652712 ~2017
11019112085922038224171912 ~2017
11019144043366114864259912 ~2018
11019509749766117058498312 ~2018
11019599522322039199044712 ~2017
11019645374322039290748712 ~2017
11020072673922040145347912 ~2017
11020186205366121117231912 ~2018
11020299932322040599864712 ~2017
11020339303122040678606312 ~2017
11021426617122042853234312 ~2017
11021596579122043193158312 ~2017
11022656690322045313380712 ~2017
11023008293988184066351312 ~2019
11023292282322046584564712 ~2017
11023591384188188731072912 ~2019
1102408395297297...76819914 2025
11024338957766146033746312 ~2018
Exponent Prime Factor Dig. Year
11024357083122048714166312 ~2017
11025580711366153484267912 ~2018
11025917995188207343960912 ~2019
11025953677122051907354312 ~2017
11025988981188207911848912 ~2019
11026062919122052125838312 ~2017
11026504547922053009095912 ~2017
11027091551922054183103912 ~2017
11027586659366165519955912 ~2018
11027695057122055390114312 ~2017
11028652159122057304318312 ~2017
11029027718322058055436712 ~2017
11029655755766177934534312 ~2018
11030708498322061416996712 ~2017
11030723618322061447236712 ~2017
11031192644322062385288712 ~2017
11031279589366187677535912 ~2018
11031774986322063549972712 ~2017
11032319567922064639135912 ~2017
11033996948322067993896712 ~2017
11035015817922070031635912 ~2017
11035495367988283962943312 ~2019
11036454955122072909910312 ~2017
1103657151713995...89190314 2023
11038358981922076717963912 ~2017
Home
5.307.017 digits
e-mail
26-01-11