Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1747630126732824...47956915 2024
17478004159134956008318312 ~2019
17478741175134957482350312 ~2019
1747899344831541...21400715 2023
17479326713934958653427912 ~2019
1747942683714929...68062314 2023
17479457252334958914504712 ~2019
17482196684334964393368712 ~2019
17482373114334964746228712 ~2019
17483861953134967723906312 ~2019
17485849849134971699698312 ~2019
17487015815934974031631912 ~2019
17487195554334974391108712 ~2019
1749390433273638...01201714 2024
17495454110334990908220712 ~2019
17495575466334991150932712 ~2019
17495981749134991963498312 ~2019
17497874927934995749855912 ~2019
1749953331531060...89071915 2023
17500132909135000265818312 ~2019
17501024684335002049368712 ~2019
17502751547935005503095912 ~2019
17503946179135007892358312 ~2019
1750787960775007...67802314 2023
17510077652335020155304712 ~2019
Exponent Prime Factor Dig. Year
17511144872335022289744712 ~2019
17511435749935022871499912 ~2019
17512657076335025314152712 ~2019
17512970570335025941140712 ~2019
17513761399135027522798312 ~2019
17514155345935028310691912 ~2019
17516220716335032441432712 ~2019
17516275877935032551755912 ~2019
17516371058335032742116712 ~2019
17516418505135032837010312 ~2019
17517363689935034727379912 ~2019
17518356278335036712556712 ~2019
17519571407935039142815912 ~2019
17520303602335040607204712 ~2019
17521289594335042579188712 ~2019
1752130701196623...50498314 2023
17522394049135044788098312 ~2019
17523724231135047448462312 ~2019
17527474772335054949544712 ~2019
1753073804533166...09811915 2023
17531110309135062220618312 ~2019
17531909081935063818163912 ~2019
17532918266335065836532712 ~2019
1753404257531683...87228914 2024
17534721869935069443739912 ~2019
Exponent Prime Factor Dig. Year
17534746736335069493472712 ~2019
17535942319135071884638312 ~2019
17537411003935074822007912 ~2019
17538770600335077541200712 ~2019
17540646523135081293046312 ~2019
17541572815135083145630312 ~2019
17541876194335083752388712 ~2019
17543512073935087024147912 ~2019
17545054169935090108339912 ~2019
17545826605135091653210312 ~2019
17546553767935093107535912 ~2019
17546952115135093904230312 ~2019
17547063553135094127106312 ~2019
1754770388833544...85436714 2023
17551801922335103603844712 ~2019
17551848829135103697658312 ~2019
17553100562335106201124712 ~2019
17554500097135109000194312 ~2019
17555274605935110549211912 ~2019
17556765731935113531463912 ~2019
17557259335135114518670312 ~2019
17557655723935115311447912 ~2019
17560203938335120407876712 ~2019
17560629673135121259346312 ~2019
17561330663935122661327912 ~2019
Exponent Prime Factor Dig. Year
17561605489135123210978312 ~2019
17561787247135123574494312 ~2019
17563008668335126017336712 ~2019
17564690459935129380919912 ~2019
17571113323135142226646312 ~2019
17571717653935143435307912 ~2019
1757281819277169...22621714 2025
17575308350335150616700712 ~2019
17576951645935153903291912 ~2019
17579485741135158971482312 ~2019
17581373005135162746010312 ~2019
17581847378335163694756712 ~2019
17582902205935165804411912 ~2019
17583222302335166444604712 ~2019
17583992731135167985462312 ~2019
17587845085135175690170312 ~2019
17588482886335176965772712 ~2019
17588552495935177104991912 ~2019
17589399163135178798326312 ~2019
17591004095935182008191912 ~2019
17592522557935185045115912 ~2019
17593783129135187566258312 ~2019
1759434391372779...38364714 2024
17595120758335190241516712 ~2019
17595364891135190729782312 ~2019
Home
5.187.277 digits
e-mail
25-11-17