Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19490035369138980070738312 ~2019
19491285115138982570230312 ~2019
19492104593938984209187912 ~2019
19494790352338989580704712 ~2019
19495838653138991677306312 ~2019
19496769493138993538986312 ~2019
1949711037971356...24271315 2025
19499241931138998483862312 ~2019
19499280806338998561612712 ~2019
19499915024338999830048712 ~2019
19500619297139001238594312 ~2019
19502599277939005198555912 ~2019
19506523057139013046114312 ~2019
19507158365939014316731912 ~2019
1950723921912340...06292114 2024
19507521131939015042263912 ~2019
19508591384339017182768712 ~2019
19508682439139017364878312 ~2019
19510762895939021525791912 ~2019
19511637722339023275444712 ~2019
19511639953139023279906312 ~2019
19512345170339024690340712 ~2019
1951261391891342...76203315 2025
19516561241939033122483912 ~2019
19516718600339033437200712 ~2019
Exponent Prime Factor Dig. Year
1951870131017612...10939114 2024
19520362160339040724320712 ~2019
19522936637939045873275912 ~2019
19523720941139047441882312 ~2019
19525643198339051286396712 ~2019
19525742804339051485608712 ~2019
19529501882339059003764712 ~2019
19530658637939061317275912 ~2019
19531696429139063392858312 ~2019
19534076461139068152922312 ~2019
19534555423139069110846312 ~2019
19535802325139071604650312 ~2019
1953814631599601...96332715 2024
1953854834412028...81175915 2025
19540650613139081301226312 ~2019
1954219093672696...49264714 2024
19543517609939087035219912 ~2019
19544464513139088929026312 ~2019
19544783299139089566598312 ~2019
19545865526339091731052712 ~2019
19549539217139099078434312 ~2019
19549997834339099995668712 ~2019
19551614131139103228262312 ~2019
19553797754339107595508712 ~2019
19557250045139114500090312 ~2019
Exponent Prime Factor Dig. Year
19557877685939115755371912 ~2019
19560391406339120782812712 ~2019
19560416051939120832103912 ~2019
19560939392339121878784712 ~2019
1956446259591447...32096714 2024
1956450322395947...80065714 2023
19564536703139129073406312 ~2019
19564734458339129468916712 ~2019
19565930150339131860300712 ~2019
19567241737139134483474312 ~2019
19570466525939140933051912 ~2019
19572219701939144439403912 ~2019
1957276689534501...85919114 2023
19572929887139145859774312 ~2019
19574518322339149036644712 ~2019
19575007244339150014488712 ~2019
19578580988339157161976712 ~2019
19579722320339159444640712 ~2019
19579855777139159711554312 ~2019
19581261152339162522304712 ~2019
19583756606339167513212712 ~2019
19584577867139169155734312 ~2019
19585079480339170158960712 ~2019
19585127729939170255459912 ~2019
1958608555813133...89296114 2024
Exponent Prime Factor Dig. Year
19586738858339173477716712 ~2019
19586787683939173575367912 ~2019
19587328501139174657002312 ~2019
19590669013139181338026312 ~2019
19592346098339184692196712 ~2019
19592724890339185449780712 ~2019
19593071351939186142703912 ~2019
19594275943139188551886312 ~2019
19594674701939189349403912 ~2019
19595640883139191281766312 ~2019
19595916026339191832052712 ~2019
19596033961139192067922312 ~2019
19597938302339195876604712 ~2019
19601135234339202270468712 ~2019
19601881963139203763926312 ~2019
19602213527939204427055912 ~2019
19603812848339207625696712 ~2019
19609594075139219188150312 ~2019
19611030758339222061516712 ~2019
19613197141139226394282312 ~2019
1961437887611035...46580915 2025
19615099289939230198579912 ~2019
19615686535139231373070312 ~2019
19615767980339231535960712 ~2019
19616765209139233530418312 ~2019
Home
5.187.277 digits
e-mail
25-11-17