Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
25286141119150572282238312 ~2020
25287005396350574010792712 ~2020
25289407675150578815350312 ~2020
25290774943150581549886312 ~2020
25291763431150583526862312 ~2020
25293839609950587679219912 ~2020
25295524913950591049827912 ~2020
25296537217150593074434312 ~2020
25300360256350600720512712 ~2020
25302114890350604229780712 ~2020
25303865587150607731174312 ~2020
25304456327950608912655912 ~2020
25305570599950611141199912 ~2020
25310093369950620186739912 ~2020
25311540200350623080400712 ~2020
25311737474350623474948712 ~2020
25314903089950629806179912 ~2020
25315535503150631071006312 ~2020
25326408536350652817072712 ~2020
25326786305950653572611912 ~2020
2532692920932583...79348714 2024
2532757055932786...61523114 2024
25332141308350664282616712 ~2020
25333320473950666640947912 ~2020
25333544660350667089320712 ~2020
Exponent Prime Factor Dig. Year
25335295196350670590392712 ~2020
2533696156072483...32948714 2024
25337344454350674688908712 ~2020
25337956493950675912987912 ~2020
25339222400350678444800712 ~2020
25341779690350683559380712 ~2020
25342339352350684678704712 ~2020
25347360703150694721406312 ~2020
25347697655950695395311912 ~2020
25350025027150700050054312 ~2020
25353316523950706633047912 ~2020
25353619319950707238639912 ~2020
25355283049150710566098312 ~2020
25358655013150717310026312 ~2020
25359296117950718592235912 ~2020
25359503888350719007776712 ~2020
25363336301950726672603912 ~2020
2536380492373652...09012914 2024
25367254079950734508159912 ~2020
2536822303876088...29288114 2024
25371659521150743319042312 ~2020
25374757589950749515179912 ~2020
25376594735950753189471912 ~2020
25376802877150753605754312 ~2020
25377503081950755006163912 ~2020
Exponent Prime Factor Dig. Year
25380827543950761655087912 ~2020
25388912641150777825282312 ~2020
25389568880350779137760712 ~2020
25389825763150779651526312 ~2020
25390680620350781361240712 ~2020
25391373746350782747492712 ~2020
25392164003950784328007912 ~2020
25392501788350785003576712 ~2020
25392941755150785883510312 ~2020
25394574404350789148808712 ~2020
25394832985150789665970312 ~2020
2539536026411980...00599914 2024
25395779801950791559603912 ~2020
25397461747150794923494312 ~2020
2539797349035485...73904914 2024
25398237505150796475010312 ~2020
25403022373150806044746312 ~2020
25408301449150816602898312 ~2020
25409302309150818604618312 ~2020
25412690465950825380931912 ~2020
25413063455950826126911912 ~2020
25414020950350828041900712 ~2020
25415655779950831311559912 ~2020
25417218422350834436844712 ~2020
25420241959150840483918312 ~2020
Exponent Prime Factor Dig. Year
25426090171150852180342312 ~2020
25426626323950853252647912 ~2020
25427349965950854699931912 ~2020
25428882938350857765876712 ~2020
2543267491915544...32363914 2024
25432735742350865471484712 ~2020
25432929733150865859466312 ~2020
25434009308350868018616712 ~2020
25434472799950868945599912 ~2020
25434797432350869594864712 ~2020
25437552080350875104160712 ~2020
25443249403150886498806312 ~2020
25446589796350893179592712 ~2020
25448574629950897149259912 ~2020
25450387502350900775004712 ~2020
25450950113950901900227912 ~2020
25451013223150902026446312 ~2020
25458025859950916051719912 ~2020
2546167990692393...11248714 2024
25462143638350924287276712 ~2020
25463570483950927140967912 ~2020
25468642160350937284320712 ~2020
25468889107150937778214312 ~2020
25470385118350940770236712 ~2020
25470397757950940795515912 ~2020
Home
4.768.925 digits
e-mail
25-05-04