Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
25110354134350220708268712 ~2020
25113502793950227005587912 ~2020
25113745567150227491134312 ~2020
25119613850350239227700712 ~2020
2512188551691165...79841715 2023
25122912167950245824335912 ~2020
2512572030535778...70219114 2024
25126029781150252059562312 ~2020
25127204069950254408139912 ~2020
25131352682350262705364712 ~2020
25133543435950267086871912 ~2020
25134339469150268678938312 ~2020
25134967490350269934980712 ~2020
25136610014350273220028712 ~2020
25138264073950276528147912 ~2020
25140427544350280855088712 ~2020
25142882066350285764132712 ~2020
25142886038350285772076712 ~2020
25143589406350287178812712 ~2020
25144313761150288627522312 ~2020
25145613488350291226976712 ~2020
25145957138350291914276712 ~2020
25147461908350294923816712 ~2020
25148108929150296217858312 ~2020
25151665970350303331940712 ~2020
Exponent Prime Factor Dig. Year
25154119805950308239611912 ~2020
25156609387150313218774312 ~2020
25156917877150313835754312 ~2020
25160989232350321978464712 ~2020
25164620443150329240886312 ~2020
25165348826350330697652712 ~2020
25166244787150332489574312 ~2020
25166558851150333117702312 ~2020
2516933616431193...41878315 2025
25170081581950340163163912 ~2020
25170389621950340779243912 ~2020
25170630553150341261106312 ~2020
25171529149150343058298312 ~2020
25173646541950347293083912 ~2020
25173891992350347783984712 ~2020
25178855252350357710504712 ~2020
25178916536350357833072712 ~2020
25181538205150363076410312 ~2020
25181991625150363983250312 ~2020
25182430627150364861254312 ~2020
25182564095950365128191912 ~2020
25183409261950366818523912 ~2020
25186034579950372069159912 ~2020
25186218505150372437010312 ~2020
25191208961950382417923912 ~2020
Exponent Prime Factor Dig. Year
25192423465150384846930312 ~2020
25193357492350386714984712 ~2020
25195158599950390317199912 ~2020
25199266424350398532848712 ~2020
25199928167950399856335912 ~2020
25206653563150413307126312 ~2020
25209111823150418223646312 ~2020
25209773309950419546619912 ~2020
25210176073150420352146312 ~2020
25212657371950425314743912 ~2020
25212929057950425858115912 ~2020
25215334601950430669203912 ~2020
25216129751950432259503912 ~2020
25218961453150437922906312 ~2020
25221064897150442129794312 ~2020
25222835297950445670595912 ~2020
25222912141150445824282312 ~2020
2522510623071664...11226314 2024
25226577655150453155310312 ~2020
2522744923731089...70513715 2025
25231044955150462089910312 ~2020
25233208973950466417947912 ~2020
25233332453950466664907912 ~2020
25233576445150467152890312 ~2020
25236900179950473800359912 ~2020
Exponent Prime Factor Dig. Year
25238022571150476045142312 ~2020
25241953364350483906728712 ~2020
25242061411150484122822312 ~2020
25242601967950485203935912 ~2020
25246551643150493103286312 ~2020
25247269885150494539770312 ~2020
25248156445150496312890312 ~2020
25249160240350498320480712 ~2020
2525060120631868...89266314 2024
25252229234350504458468712 ~2020
25261174562350522349124712 ~2020
25266506504350533013008712 ~2020
2526657160491490...46891115 2025
25268118977950536237955912 ~2020
25268665010350537330020712 ~2020
25274040107950548080215912 ~2020
25274632783150549265566312 ~2020
25275267776350550535552712 ~2020
25277887799950555775599912 ~2020
25278859135150557718270312 ~2020
25280127667150560255334312 ~2020
25284112004350568224008712 ~2020
25285108691950570217383912 ~2020
25285588735150571177470312 ~2020
25285937237950571874475912 ~2020
Home
4.768.925 digits
e-mail
25-05-04