Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20228338787940456677575912 ~2019
20228658409140457316818312 ~2019
20229137738340458275476712 ~2019
20229340097940458680195912 ~2019
20233242074340466484148712 ~2019
2023502596911821...37219114 2024
20235286073940470572147912 ~2019
20239839865140479679730312 ~2019
20240129423940480258847912 ~2019
20241801403140483602806312 ~2019
20243455751940486911503912 ~2019
20243523956340487047912712 ~2019
20244191981940488383963912 ~2019
20245110457140490220914312 ~2019
20247253433940494506867912 ~2019
20248133798340496267596712 ~2019
20248438451940496876903912 ~2019
20249299988340498599976712 ~2019
20250568337940501136675912 ~2019
20252215661940504431323912 ~2019
20253782689140507565378312 ~2019
20254020938340508041876712 ~2019
20254517210340509034420712 ~2019
20254574375940509148751912 ~2019
20254722170340509444340712 ~2019
Exponent Prime Factor Dig. Year
20255281067940510562135912 ~2019
20257451995140514903990312 ~2019
20258143490340516286980712 ~2019
20258322505140516645010312 ~2019
2025884886591705...45087915 2023
2026134803872431...64644114 2024
20261382427140522764854312 ~2019
20261664215940523328431912 ~2019
20263750475940527500951912 ~2019
20265122852340530245704712 ~2019
20266410719940532821439912 ~2019
20268023948340536047896712 ~2019
20270434393140540868786312 ~2019
20270769001140541538002312 ~2019
20270890034340541780068712 ~2019
20271094459140542188918312 ~2019
20271171907140542343814312 ~2019
20271761504340543523008712 ~2019
20271962168340543924336712 ~2019
20272455469140544910938312 ~2019
20272545716340545091432712 ~2019
2027424188593234...47648716 2025
20275836631140551673262312 ~2019
20278359146340556718292712 ~2019
20282050295940564100591912 ~2019
Exponent Prime Factor Dig. Year
20283646657140567293314312 ~2019
20285404574340570809148712 ~2019
20285686789140571373578312 ~2019
20289339866340578679732712 ~2019
20290986667140581973334312 ~2019
20295704333940591408667912 ~2019
20296653025140593306050312 ~2019
20297002496340594004992712 ~2019
20297014382340594028764712 ~2019
20298326984340596653968712 ~2019
20298761912340597523824712 ~2019
20299508582340599017164712 ~2019
20299646894340599293788712 ~2019
20299744795140599489590312 ~2019
20301638095140603276190312 ~2019
2030203595994913...02295914 2024
20302204159140604408318312 ~2019
20306543257140613086514312 ~2019
20307235897140614471794312 ~2019
20308151191140616302382312 ~2019
20309548316340619096632712 ~2019
20310622843140621245686312 ~2019
20311062073140622124146312 ~2019
20312254568340624509136712 ~2019
20313021935940626043871912 ~2019
Exponent Prime Factor Dig. Year
20315717873940631435747912 ~2019
20316164113140632328226312 ~2019
20320605692340641211384712 ~2019
20322438025140644876050312 ~2019
2032600333139756...99024114 2025
20328310844340656621688712 ~2019
20328606266340657212532712 ~2019
20329714585140659429170312 ~2019
20331138475140662276950312 ~2019
20335943324340671886648712 ~2019
20336025314340672050628712 ~2019
20340814994340681629988712 ~2019
20341004887140682009774312 ~2019
20341413139140682826278312 ~2019
20344892969940689785939912 ~2019
2034604258214516...53226314 2024
20348273759940696547519912 ~2019
20350150112340700300224712 ~2019
20350372457940700744915912 ~2019
2035055582872442...99444114 2024
20351411867940702823735912 ~2019
20355178913940710357827912 ~2019
20356478594340712957188712 ~2019
20358951781140717903562312 ~2019
20361128432340722256864712 ~2019
Home
4.768.925 digits
e-mail
25-05-04