Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15726526409931453052819912 ~2018
15726682783131453365566312 ~2018
15727671065931455342131912 ~2018
1572780116235441...02155914 2024
15730128188331460256376712 ~2018
15730376861931460753723912 ~2018
15730577495931461154991912 ~2018
15731613398331463226796712 ~2018
15732499136331464998272712 ~2018
15734277527931468555055912 ~2018
15735025091931470050183912 ~2018
15735369191931470738383912 ~2018
15735879535131471759070312 ~2018
15736116380331472232760712 ~2018
15736733131131473466262312 ~2018
15737086094331474172188712 ~2018
15737364197931474728395912 ~2018
15741930584331483861168712 ~2018
15742524122331485048244712 ~2018
15743347643931486695287912 ~2018
15743722865931487445731912 ~2018
15745300418331490600836712 ~2018
15745465226331490930452712 ~2018
15747314209131494628418312 ~2018
1575186085811209...39020915 2025
Exponent Prime Factor Dig. Year
15752900941131505801882312 ~2018
15753680285931507360571912 ~2018
15754839869931509679739912 ~2018
15755483150331510966300712 ~2018
15755812195131511624390312 ~2018
1575632884092993...79771114 2024
15757822795131515645590312 ~2018
15758397163131516794326312 ~2018
15760507835931521015671912 ~2018
15761733349131523466698312 ~2018
15762119897931524239795912 ~2018
15762233599131524467198312 ~2018
15763303280331526606560712 ~2018
15763576451931527152903912 ~2018
15768472892331536945784712 ~2018
15770104604331540209208712 ~2018
15771283019931542566039912 ~2018
15775506818331551013636712 ~2018
15776663393931553326787912 ~2018
15778856600331557713200712 ~2018
1577896420913418...54360716 2023
15779591437131559182874312 ~2018
15782625887931565251775912 ~2018
15783004163931566008327912 ~2018
15783224041131566448082312 ~2018
Exponent Prime Factor Dig. Year
15783839600331567679200712 ~2018
15784479761931568959523912 ~2018
15786631957131573263914312 ~2018
15787142555931574285111912 ~2018
15789286813131578573626312 ~2018
15789664616331579329232712 ~2018
15791167505931582335011912 ~2018
15791724991131583449982312 ~2018
15791797175931583594351912 ~2018
15799799396331599598792712 ~2018
15802638560331605277120712 ~2018
15803694493131607388986312 ~2018
15804784163931609568327912 ~2018
15806360219931612720439912 ~2018
15807002432331614004864712 ~2018
15807215803131614431606312 ~2018
15807257510331614515020712 ~2018
15807367130331614734260712 ~2018
15808930874331617861748712 ~2018
15809701910331619403820712 ~2018
15810251065131620502130312 ~2018
15811676099931623352199912 ~2018
15812108741931624217483912 ~2018
15812280769131624561538312 ~2018
15812318039931624636079912 ~2018
Exponent Prime Factor Dig. Year
15812794277931625588555912 ~2018
15813731642331627463284712 ~2018
15814458787131628917574312 ~2018
15815949164331631898328712 ~2018
15817656343131635312686312 ~2018
15817885951131635771902312 ~2018
15818730923931637461847912 ~2018
15818776237131637552474312 ~2018
15819851083131639702166312 ~2018
15820691930331641383860712 ~2018
15823444424331646888848712 ~2018
1582571899676456...50653714 2024
15827449663131654899326312 ~2018
15830772973131661545946312 ~2018
15831133229931662266459912 ~2018
15832000909131664001818312 ~2018
15832659835131665319670312 ~2018
15832712675931665425351912 ~2018
15836138630331672277260712 ~2018
15836969665131673939330312 ~2018
15837201032331674402064712 ~2018
1583871076032914...79895314 2024
15839101109931678202219912 ~2018
15840063674331680127348712 ~2018
15840502819131681005638312 ~2018
Home
4.768.925 digits
e-mail
25-05-04