Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2969217220117815303320712 ~2014
296923827115938476542311 ~2013
2969262667317815576003912 ~2014
2969291265129692912651112 ~2015
296942313235938846264711 ~2013
296944927491211...04159314 2023
296974753435939495068711 ~2013
297002075035940041500711 ~2013
2970062689929700626899112 ~2015
297011923435940238468711 ~2013
2970124602117820747612712 ~2014
297013540195940270803911 ~2013
297015809395940316187911 ~2013
297016032715940320654311 ~2013
297017392795940347855911 ~2013
297038369995940767399911 ~2013
297067079035941341580711 ~2013
2970789637717824737826312 ~2014
297083333515941666670311 ~2013
297090477835941809556711 ~2013
297096581035941931620711 ~2013
297110602435942212048711 ~2013
2971133125717826798754312 ~2014
297129031795942580635911 ~2013
297136379635942727592711 ~2013
Exponent Prime Factor Dig. Year
297137601235942752024711 ~2013
2971443268753485978836712 ~2015
297161057035943221140711 ~2013
297167776195943355523911 ~2013
297170154115943403082311 ~2013
297170799715943415994311 ~2013
297173630995943472619911 ~2013
297174969115943499382311 ~2013
297176647195943532943911 ~2013
297191205235943824104711 ~2013
297216545515944330910311 ~2013
297229034995944580699911 ~2013
297232851595944657031911 ~2013
297236039515944720790311 ~2013
2972393484117834360904712 ~2014
297245213635944904272711 ~2013
297260792035945215840711 ~2013
2972614749717835688498312 ~2014
2972619366117835716196712 ~2014
2973112378723784899029712 ~2014
297312786835946255736711 ~2013
297313446835946268936711 ~2013
2973177642117839065852712 ~2014
297318982795946379655911 ~2013
2973303506941626249096712 ~2015
Exponent Prime Factor Dig. Year
297362187235947243744711 ~2013
2973689965123789519720912 ~2014
297371611315947432226311 ~2013
297375445795947508915911 ~2013
297380114635947602292711 ~2013
297383584315947671686311 ~2013
2973900109317843400655912 ~2014
297402826195948056523911 ~2013
297404398435948087968711 ~2013
297425377195948507543911 ~2013
2974395313771385487528912 ~2015
2974439305929744393059112 ~2015
2974617427317847704563912 ~2014
297473100115949462002311 ~2013
2974803438729748034387112 ~2015
297502464115950049282311 ~2013
297523064395950461287911 ~2013
2975314024329753140243112 ~2015
297531664315950633286311 ~2013
297548210515950964210311 ~2013
297568065715951361314311 ~2013
297571879195951437583911 ~2013
297576436315951528726311 ~2013
2975792461317854754767912 ~2014
297580049995951600999911 ~2013
Exponent Prime Factor Dig. Year
297590521315951810426311 ~2013
297605966995952119339911 ~2013
297639772915952795458311 ~2013
297650361835953007236711 ~2013
297664808995953296179911 ~2013
297671795515953435910311 ~2013
297686505595953730111911 ~2013
297686809195953736183911 ~2013
297686981395953739627911 ~2013
297688997035953779940711 ~2013
297702131635954042632711 ~2013
2977150441717862902650312 ~2014
297736236115954724722311 ~2013
297743425795954868515911 ~2013
297752952115955059042311 ~2013
2977703905123821631240912 ~2014
297786207772828...73815114 2023
2977946782117867680692712 ~2014
2977959004117867754024712 ~2014
297814871635956297432711 ~2013
297839917195956798343911 ~2013
297841727635956834552711 ~2013
297854682595957093651911 ~2013
2978671891717872031350312 ~2014
297877673635957553472711 ~2013
Home
5.187.277 digits
e-mail
25-11-17