Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
26485463359152970926718312 ~2020
26485678757952971357515912 ~2020
26489182693152978365386312 ~2020
26494957877952989915755912 ~2020
26498939309952997878619912 ~2020
2650011640931060...63720115 2023
26502619865953005239731912 ~2020
2650360489194505...31623114 2023
26505058520353010117040712 ~2020
26507121944353014243888712 ~2020
26508483643153016967286312 ~2020
2650952543875031...82652715 2023
26509949113153019898226312 ~2020
26520743828353041487656712 ~2020
26521924231153043848462312 ~2020
26522322775153044645550312 ~2020
26524497341953048994683912 ~2020
26525659424353051318848712 ~2020
26530161881953060323763912 ~2020
26530473481153060946962312 ~2020
26532942332353065884664712 ~2020
26533418533153066837066312 ~2020
26534263351153068526702312 ~2020
26535076724353070153448712 ~2020
2653525033378438...06116714 2023
Exponent Prime Factor Dig. Year
26536792807153073585614312 ~2020
26538227329153076454658312 ~2020
26540209141153080418282312 ~2020
2654089505714299...99250314 2024
26540897570353081795140712 ~2020
26541475424353082950848712 ~2020
26544533264353089066528712 ~2020
26547792266353095584532712 ~2020
26548048418353096096836712 ~2020
2654906227732548...78620914 2024
26551056859153102113718312 ~2020
26553343646353106687292712 ~2020
26554038503953108077007912 ~2020
26554195187953108390375912 ~2020
2655496226993239...96927914 2024
26555585015953111170031912 ~2020
26559097153153118194306312 ~2020
26571642461953143284923912 ~2020
26576925182353153850364712 ~2020
2658014854376538...41750314 2024
26581604473153163208946312 ~2020
26581666649953163333299912 ~2020
2658620073713881...07616714 2023
26588179087153176358174312 ~2020
26588663582353177327164712 ~2020
Exponent Prime Factor Dig. Year
2658998531692712...02323914 2024
2659314060192340...72967314 2024
26593554944353187109888712 ~2020
26595249619153190499238312 ~2020
2659555627073404...02649714 2024
26597243981953194487963912 ~2020
2659889945111787...31139315 2025
26599454335153198908670312 ~2020
2660085946276001...47851315 2025
26603624888353207249776712 ~2020
26604181129153208362258312 ~2020
26605042706353210085412712 ~2020
2660801126815108...63475314 2023
26608135418353216270836712 ~2020
26609542531153219085062312 ~2020
26609629093153219258186312 ~2020
26611094840353222189680712 ~2020
26611231148353222462296712 ~2020
26615021366353230042732712 ~2020
26617249199953234498399912 ~2020
26618268365953236536731912 ~2020
26618671615153237343230312 ~2020
26619906413953239812827912 ~2020
26623257947953246515895912 ~2020
26623816861153247633722312 ~2020
Exponent Prime Factor Dig. Year
26624949751153249899502312 ~2020
26625652493953251304987912 ~2020
26630263993153260527986312 ~2020
26632523189953265046379912 ~2020
26635230049153270460098312 ~2020
2663581533011358...18351115 2024
26636326559953272653119912 ~2020
26640443489953280886979912 ~2020
26640534641953281069283912 ~2020
2664202180634955...55971914 2023
26643558770353287117540712 ~2020
26647907857153295815714312 ~2020
26648227697953296455395912 ~2020
26650391347153300782694312 ~2020
26652161443153304322886312 ~2020
26653407980353306815960712 ~2020
26654217878353308435756712 ~2020
26654572505953309145011912 ~2020
26655512369953311024739912 ~2020
26660075335153320150670312 ~2020
26663975101153327950202312 ~2020
26668861465153337722930312 ~2020
26671482601153342965202312 ~2020
26672456414353344912828712 ~2020
26674552376353349104752712 ~2020
Home
4.679.597 digits
e-mail
25-03-23