Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14927312785129854625570312 ~2018
14928125387929856250775912 ~2018
14928939649129857879298312 ~2018
14929280849929858561699912 ~2018
14929899638329859799276712 ~2018
14930758081129861516162312 ~2018
14930988080329861976160712 ~2018
14931732109129863464218312 ~2018
14933214032329866428064712 ~2018
14933379836329866759672712 ~2018
14933823836329867647672712 ~2018
14933871397129867742794312 ~2018
14935001711929870003423912 ~2018
14935577525929871155051912 ~2018
1493641782111890...61512715 2023
14937444434329874888868712 ~2018
14937819338329875638676712 ~2018
14939902885129879805770312 ~2018
14941001225929882002451912 ~2018
14941726171129883452342312 ~2018
14943436922329886873844712 ~2018
14944091351929888182703912 ~2018
14944194896329888389792712 ~2018
14944449133129888898266312 ~2018
14944755920329889511840712 ~2018
Exponent Prime Factor Dig. Year
14945746687129891493374312 ~2018
14945998697929891997395912 ~2018
14948093261929896186523912 ~2018
14948213345929896426691912 ~2018
14949020815129898041630312 ~2018
14949993779929899987559912 ~2018
14951263310329902526620712 ~2018
14951653717129903307434312 ~2018
14952948809929905897619912 ~2018
14953250708329906501416712 ~2018
14953846874329907693748712 ~2018
14957551586329915103172712 ~2018
14957610764329915221528712 ~2018
14958325865929916651731912 ~2018
14959818097129919636194312 ~2018
14960918450329921836900712 ~2018
14962671767929925343535912 ~2018
14964027068329928054136712 ~2018
14964081769129928163538312 ~2018
14965055455129930110910312 ~2018
14968756571929937513143912 ~2018
14969338733929938677467912 ~2018
14969448026329938896052712 ~2018
14970745268329941490536712 ~2018
14972626316329945252632712 ~2018
Exponent Prime Factor Dig. Year
14972922577129945845154312 ~2018
14973177014329946354028712 ~2018
14973433087129946866174312 ~2018
14973479432329946958864712 ~2018
14974869788329949739576712 ~2018
14974995181129949990362312 ~2018
14975966693929951933387912 ~2018
14977830601129955661202312 ~2018
14977837088329955674176712 ~2018
1497883930372606...38843914 2024
14979251993929958503987912 ~2018
14980273598329960547196712 ~2018
14980357184329960714368712 ~2018
14980392626329960785252712 ~2018
14983722229129967444458312 ~2018
14983959218329967918436712 ~2018
14984888009929969776019912 ~2018
14987912191129975824382312 ~2018
14988314795929976629591912 ~2018
1498849957212518...28112914 2024
14989268273929978536547912 ~2018
14990002490329980004980712 ~2018
14990175650329980351300712 ~2018
14992367453929984734907912 ~2018
14993517439129987034878312 ~2018
Exponent Prime Factor Dig. Year
14993668501129987337002312 ~2018
14995553162329991106324712 ~2018
14997229745929994459491912 ~2018
14997358007929994716015912 ~2018
14997447535129994895070312 ~2018
14997516577129995033154312 ~2018
14997982682329995965364712 ~2018
14999419619929998839239912 ~2018
14999676343129999352686312 ~2018
14999939303929999878607912 ~2018
1500172674373840...46387314 2023
15002628098330005256196712 ~2018
15003273361130006546722312 ~2018
15003738188330007476376712 ~2018
15006912515930013825031912 ~2018
15010963603130021927206312 ~2018
15012082363130024164726312 ~2018
15012475387130024950774312 ~2018
15012926693930025853387912 ~2018
15016284541130032569082312 ~2018
15018009823130036019646312 ~2018
15019479241130038958482312 ~2018
15019756895930039513791912 ~2018
15020024834330040049668712 ~2018
15020764958330041529916712 ~2018
Home
4.768.925 digits
e-mail
25-05-04