Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16324055971132648111942312 ~2019
16324830703132649661406312 ~2019
16325123659132650247318312 ~2019
16327245644332654491288712 ~2019
16330463978332660927956712 ~2019
16330966058332661932116712 ~2019
16331433671932662867343912 ~2019
16331616355132663232710312 ~2019
16332266761132664533522312 ~2019
1633292610317611...64044714 2024
16334694581932669389163912 ~2019
16337437745932674875491912 ~2019
16338397127932676794255912 ~2019
16341735146332683470292712 ~2019
16342173455932684346911912 ~2019
16342310489932684620979912 ~2019
16346850577132693701154312 ~2019
16347802891132695605782312 ~2019
16348052461132696104922312 ~2019
16348177531132696355062312 ~2019
16348596131932697192263912 ~2019
16350499453132700998906312 ~2019
16350553945132701107890312 ~2019
16353246821932706493643912 ~2019
16353447197932706894395912 ~2019
Exponent Prime Factor Dig. Year
16356238903132712477806312 ~2019
1635659173692747...11799314 2024
16356834713932713669427912 ~2019
16359063649132718127298312 ~2019
16359115627132718231254312 ~2019
16361406128332722812256712 ~2019
16361733179932723466359912 ~2019
16362994517932725989035912 ~2019
16364073703132728147406312 ~2019
16365359747932730719495912 ~2019
16365458924332730917848712 ~2019
16368305495932736610991912 ~2019
1636881055433879...13691115 2023
16370102735932740205471912 ~2019
16370154805132740309610312 ~2019
16370268128332740536256712 ~2019
16371238457932742476915912 ~2019
16373329904332746659808712 ~2019
16373852653132747705306312 ~2019
16374023507932748047015912 ~2019
16375026341932750052683912 ~2019
16375342123132750684246312 ~2019
16375472761132750945522312 ~2019
16375589981932751179963912 ~2019
1637573644691113...02256718 2025
Exponent Prime Factor Dig. Year
16376320129132752640258312 ~2019
16376588537932753177075912 ~2019
16381084028332762168056712 ~2019
16381550552332763101104712 ~2019
16381915700332763831400712 ~2019
16383293999932766587999912 ~2019
16384123091932768246183912 ~2019
16384694426332769388852712 ~2019
16385537095132771074190312 ~2019
16386758023132773516046312 ~2019
16387842560332775685120712 ~2019
16390092377932780184755912 ~2019
16390976549932781953099912 ~2019
16394184746332788369492712 ~2019
16394528869132789057738312 ~2019
16395529244332791058488712 ~2019
16398115567132796231134312 ~2019
1639951634033935...21672114 2024
16400445770332800891540712 ~2019
16400942005132801884010312 ~2019
16401447139132802894278312 ~2019
16401572987932803145975912 ~2019
16401792379132803584758312 ~2019
16402133473132804266946312 ~2019
16402928306332805856612712 ~2019
Exponent Prime Factor Dig. Year
16404573182332809146364712 ~2019
16406053873132812107746312 ~2019
16408831337932817662675912 ~2019
16410248533132820497066312 ~2019
16412304365932824608731912 ~2019
16413922249132827844498312 ~2019
16414604354332829208708712 ~2019
16419327899932838655799912 ~2019
16419996497932839992995912 ~2019
16420290197932840580395912 ~2019
16420868144332841736288712 ~2019
16421041964332842083928712 ~2019
16421364110332842728220712 ~2019
16422648755932845297511912 ~2019
16423139405932846278811912 ~2019
16425754472332851508944712 ~2019
16425775070332851550140712 ~2019
16426324736332852649472712 ~2019
16428409643932856819287912 ~2019
16431870025132863740050312 ~2019
16432759351132865518702312 ~2019
16432871624332865743248712 ~2019
16435382240332870764480712 ~2019
1643595779532859...56382314 2024
16439607407932879214815912 ~2019
Home
4.679.597 digits
e-mail
25-03-23