Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14271253543128542507086312 ~2018
14272228277928544456555912 ~2018
14273464025928546928051912 ~2018
14275045063128550090126312 ~2018
14275365931128550731862312 ~2018
14276621123928553242247912 ~2018
14277504389928555008779912 ~2018
14278770560328557541120712 ~2018
14279313527928558627055912 ~2018
14280554801928561109603912 ~2018
14280801554328561603108712 ~2018
1428280364413656...32889714 2024
14282964613128565929226312 ~2018
14283681703128567363406312 ~2018
14283732641928567465283912 ~2018
14285059723128570119446312 ~2018
14285394650328570789300712 ~2018
14286348182328572696364712 ~2018
14287596242328575192484712 ~2018
14288358133128576716266312 ~2018
14289475358328578950716712 ~2018
14290521841128581043682312 ~2018
14291475505128582951010312 ~2018
14292027212328584054424712 ~2018
1429273011732629...41583314 2024
Exponent Prime Factor Dig. Year
14293305512328586611024712 ~2018
14294206597128588413194312 ~2018
14296597724328593195448712 ~2018
14297312738328594625476712 ~2018
14297361530328594723060712 ~2018
14298239495928596478991912 ~2018
14299166743128598333486312 ~2018
14299234103928598468207912 ~2018
14301065959128602131918312 ~2018
14302941659928605883319912 ~2018
14303152376328606304752712 ~2018
14303232325128606464650312 ~2018
14303749411128607498822312 ~2018
14306652217128613304434312 ~2018
14306755925928613511851912 ~2018
14306847578328613695156712 ~2018
14307463273128614926546312 ~2018
14307654899928615309799912 ~2018
14308352303928616704607912 ~2018
1430839971592395...43364717 2023
14308575287928617150575912 ~2018
14312087252328624174504712 ~2018
14312436445128624872890312 ~2018
14313308455128626616910312 ~2018
14313720494328627440988712 ~2018
Exponent Prime Factor Dig. Year
14313778333128627556666312 ~2018
1431633329032519...59092914 2024
14316899611128633799222312 ~2018
14317366172328634732344712 ~2018
14318023459128636046918312 ~2018
14319053900328638107800712 ~2018
14319657206328639314412712 ~2018
14319673385928639346771912 ~2018
14319794383128639588766312 ~2018
14320315031928640630063912 ~2018
14320744633128641489266312 ~2018
14322568331928645136663912 ~2018
14322674396328645348792712 ~2018
14322968501928645937003912 ~2018
14325462203928650924407912 ~2018
1432604860431103...25311115 2025
1432647142331461...85176714 2024
14329955120328659910240712 ~2018
14330098310328660196620712 ~2018
14330148542328660297084712 ~2018
14330460848328660921696712 ~2018
14332201070328664402140712 ~2018
14333265794328666531588712 ~2018
14336570582328673141164712 ~2018
14336673937128673347874312 ~2018
Exponent Prime Factor Dig. Year
14337651979128675303958312 ~2018
14338136468328676272936712 ~2018
14338154216328676308432712 ~2018
14339353415928678706831912 ~2018
14339505197928679010395912 ~2018
14339624252328679248504712 ~2018
14339814467928679628935912 ~2018
14344061407128688122814312 ~2018
14344684406328689368812712 ~2018
14345341177128690682354312 ~2018
14345721881928691443763912 ~2018
14346890756328693781512712 ~2018
14348577751128697155502312 ~2018
14348602241928697204483912 ~2018
14349585623928699171247912 ~2018
14350198661928700397323912 ~2018
14350900459128701800918312 ~2018
14352000641928704001283912 ~2018
14352167321928704334643912 ~2018
1435260681111231...43923915 2025
14356794835128713589670312 ~2018
14356853591928713707183912 ~2018
1435774475391251...25400915 2025
14357965817928715931635912 ~2018
1435941397431286...20972915 2025
Home
4.768.925 digits
e-mail
25-05-04