Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
25024666951150049333902312 ~2020
25025124170350050248340712 ~2020
25025517701950051035403912 ~2020
25027402267150054804534312 ~2020
25028238415150056476830312 ~2020
25028447219950056894439912 ~2020
25030645322350061290644712 ~2020
25031979380350063958760712 ~2020
25035032245150070064490312 ~2020
25037069359150074138718312 ~2020
2504124756133155...92723914 2024
25041519929950083039859912 ~2020
25044333920350088667840712 ~2020
25046865059950093730119912 ~2020
25049699432350099398864712 ~2020
25050237719950100475439912 ~2020
25051341242350102682484712 ~2020
25055788213150111576426312 ~2020
2505711100813157...87020714 2024
25057948669150115897338312 ~2020
25060375058350120750116712 ~2020
25061248379950122496759912 ~2020
25061443835950122887671912 ~2020
25064776292350129552584712 ~2020
25064824525150129649050312 ~2020
Exponent Prime Factor Dig. Year
25066337449150132674898312 ~2020
25067200823950134401647912 ~2020
25071391874350142783748712 ~2020
2507421016693008...20028114 2024
25074759295150149518590312 ~2020
25075957106350151914212712 ~2020
25086424211950172848423912 ~2020
25086592453150173184906312 ~2020
2508946614413161...34156714 2024
25091537138350183074276712 ~2020
25097165186350194330372712 ~2020
25097609027950195218055912 ~2020
25103679449950207358899912 ~2020
25105411513150210823026312 ~2020
25107034541950214069083912 ~2020
25107194489950214388979912 ~2020
2510901053631657...95395914 2024
25110354134350220708268712 ~2020
25113502793950227005587912 ~2020
25113745567150227491134312 ~2020
25119613850350239227700712 ~2020
2512188551691165...79841715 2023
25122912167950245824335912 ~2020
2512572030535778...70219114 2024
25126029781150252059562312 ~2020
Exponent Prime Factor Dig. Year
25127204069950254408139912 ~2020
25131352682350262705364712 ~2020
25133543435950267086871912 ~2020
25134339469150268678938312 ~2020
25134967490350269934980712 ~2020
25136610014350273220028712 ~2020
25138264073950276528147912 ~2020
25140427544350280855088712 ~2020
25142882066350285764132712 ~2020
25142886038350285772076712 ~2020
25143589406350287178812712 ~2020
25144313761150288627522312 ~2020
25145613488350291226976712 ~2020
25145957138350291914276712 ~2020
25147461908350294923816712 ~2020
25148108929150296217858312 ~2020
25151665970350303331940712 ~2020
25154119805950308239611912 ~2020
25156609387150313218774312 ~2020
25156917877150313835754312 ~2020
25160989232350321978464712 ~2020
25164620443150329240886312 ~2020
25165348826350330697652712 ~2020
25166244787150332489574312 ~2020
25166558851150333117702312 ~2020
Exponent Prime Factor Dig. Year
2516933616431193...41878315 2025
25170081581950340163163912 ~2020
25170389621950340779243912 ~2020
25170630553150341261106312 ~2020
25171529149150343058298312 ~2020
25173646541950347293083912 ~2020
25173891992350347783984712 ~2020
25178855252350357710504712 ~2020
25178916536350357833072712 ~2020
25181538205150363076410312 ~2020
25181991625150363983250312 ~2020
25182430627150364861254312 ~2020
25182564095950365128191912 ~2020
25183409261950366818523912 ~2020
25186034579950372069159912 ~2020
25186218505150372437010312 ~2020
25191208961950382417923912 ~2020
25192423465150384846930312 ~2020
25193357492350386714984712 ~2020
25195158599950390317199912 ~2020
25199266424350398532848712 ~2020
25199928167950399856335912 ~2020
25206653563150413307126312 ~2020
25209111823150418223646312 ~2020
25209773309950419546619912 ~2020
Home
4.679.597 digits
e-mail
25-03-23