Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9579560059119159120118312 ~2017
9580402887757482417326312 ~2018
9580509377357483056263912 ~2018
958075728791833...49040715 2023
9581240646157487443876712 ~2018
9581529325119163058650312 ~2017
9582593369919165186739912 ~2017
9582780871119165561742312 ~2017
9582799910319165599820712 ~2017
9582919354157497516124712 ~2018
9582941495919165882991912 ~2017
9583236937119166473874312 ~2017
9583286690319166573380712 ~2017
9583554086319167108172712 ~2017
9584681030319169362060712 ~2017
9584696365757508178194312 ~2018
9584826851357508961107912 ~2018
9585698039919171396079912 ~2017
9586163531919172327063912 ~2017
9586627925976693023407312 ~2018
9586818263919173636527912 ~2017
9587154211119174308422312 ~2017
9587177884157523067304712 ~2018
9587771863776702174909712 ~2018
9588172919919176345839912 ~2017
Exponent Prime Factor Dig. Year
9588373831176706990648912 ~2018
9588919747119177839494312 ~2017
9588936319757533617918312 ~2018
9589268359119178536718312 ~2017
9590656055919181312111912 ~2017
9590720360319181440720712 ~2017
9591959337757551756026312 ~2018
9592462027119184924054312 ~2017
9592725779919185451559912 ~2017
9592948529919185897059912 ~2017
9593510333919187020667912 ~2017
9594628689757567772138312 ~2018
9594662786319189325572712 ~2017
9595194277119190388554312 ~2017
9595324909757571949458312 ~2018
9595758061119191516122312 ~2017
9596343037119192686074312 ~2017
9596529623357579177739912 ~2018
9596831876319193663752712 ~2017
9596945784157581674704712 ~2018
9597237371919194474743912 ~2017
9597557030319195114060712 ~2017
9597692396319195384792712 ~2017
9598156925919196313851912 ~2017
9599094019119198188038312 ~2017
Exponent Prime Factor Dig. Year
9600050921919200101843912 ~2017
9600651215919201302431912 ~2017
9601205081919202410163912 ~2017
9601510903119203021806312 ~2017
9601656295119203312590312 ~2017
9601905031119203810062312 ~2017
9602892710319205785420712 ~2017
9602895059919205790119912 ~2017
9603895155757623370934312 ~2018
9604093247357624559483912 ~2018
9604665335919209330671912 ~2017
9604951154319209902308712 ~2017
9605034625119210069250312 ~2017
9605081563119210163126312 ~2017
9605349229119210698458312 ~2017
9605591773119211183546312 ~2017
9605967416319211934832712 ~2017
9606107737357636646423912 ~2018
9606327907357637967443912 ~2018
9606716581176853732648912 ~2018
9606993602319213987204712 ~2017
9607068536319214137072712 ~2017
9607100279919214200559912 ~2017
9607619284776860954277712 ~2018
9607666523357645999139912 ~2018
Exponent Prime Factor Dig. Year
9607909229919215818459912 ~2017
9608214419919216428839912 ~2017
9608222717919216445435912 ~2017
9608395231119216790462312 ~2017
9608478386319216956772712 ~2017
9608940254319217880508712 ~2017
9609504291757657025750312 ~2018
9609511909119219023818312 ~2017
9609639692319219279384712 ~2017
9609884000319219768000712 ~2017
9610168520976881348167312 ~2018
9610176752319220353504712 ~2017
9610242010176881936080912 ~2018
9612162703176897301624912 ~2018
9612356099919224712199912 ~2017
961426357812365...40212714 2024
9614496204157686977224712 ~2018
9614633981919229267963912 ~2017
9614835248319229670496712 ~2017
9614856602319229713204712 ~2017
9615500965119231001930312 ~2017
9615812053757694872322312 ~2018
9616730593119233461186312 ~2017
9616910243919233820487912 ~2017
9617714803119235429606312 ~2017
Home
4.768.925 digits
e-mail
25-05-04