Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13701331111127402662222312 ~2018
13701734888327403469776712 ~2018
1370221956312767...51746314 2024
13702391675927404783351912 ~2018
13705166471927410332943912 ~2018
13705499569127410999138312 ~2018
13706297837927412595675912 ~2018
13707542941127415085882312 ~2018
13707770960327415541920712 ~2018
13707775061927415550123912 ~2018
1370851299133509...25772914 2023
13708927787927417855575912 ~2018
13711556300327423112600712 ~2018
13712635394327425270788712 ~2018
13714396484327428792968712 ~2018
13715610319127431220638312 ~2018
13718499470327436998940712 ~2018
13718632400327437264800712 ~2018
13719211334327438422668712 ~2018
13720591082327441182164712 ~2018
13721405461127442810922312 ~2018
13722031007927444062015912 ~2018
13723497980327446995960712 ~2018
1372466352312854...12804914 2024
13724862521927449725043912 ~2018
Exponent Prime Factor Dig. Year
13726253600327452507200712 ~2018
1372669603012717...13959914 2024
1372705709778236...58620114 2023
13731942119927463884239912 ~2018
13734282307127468564614312 ~2018
13734927503927469855007912 ~2018
13735085515127470171030312 ~2018
13735109773127470219546312 ~2018
13736555213927473110427912 ~2018
13737819245927475638491912 ~2018
13738100075927476200151912 ~2018
13738996711127477993422312 ~2018
13739126989127478253978312 ~2018
1373979245512335...17367114 2024
13742006693927484013387912 ~2018
13742945822327485891644712 ~2018
13747115821127494231642312 ~2018
13747659247127495318494312 ~2018
13748066795927496133591912 ~2018
13748470261127496940522312 ~2018
13748767478327497534956712 ~2018
13749490226327498980452712 ~2018
1374988586411539...16779314 2025
13752591451127505182902312 ~2018
13753911829127507823658312 ~2018
Exponent Prime Factor Dig. Year
13753929002327507858004712 ~2018
13754224321127508448642312 ~2018
13754252408327508504816712 ~2018
13754516009927509032019912 ~2018
13754697811127509395622312 ~2018
13754795216327509590432712 ~2018
13755176701127510353402312 ~2018
13756025723927512051447912 ~2018
13756475317127512950634312 ~2018
13757092499927514184999912 ~2018
13757367074327514734148712 ~2018
13758653504327517307008712 ~2018
13761325811927522651623912 ~2018
13763038649927526077299912 ~2018
13763106710327526213420712 ~2018
13763306594327526613188712 ~2018
13763970560327527941120712 ~2018
13764131683127528263366312 ~2018
13764768577127529537154312 ~2018
13765096115927530192231912 ~2018
13766764801127533529602312 ~2018
13767489415127534978830312 ~2018
13767982837127535965674312 ~2018
13769087186327538174372712 ~2018
13769982392327539964784712 ~2018
Exponent Prime Factor Dig. Year
13770594887927541189775912 ~2018
13772840509127545681018312 ~2018
13773033223127546066446312 ~2018
1377401987812837...94888714 2024
13775763763127551527526312 ~2018
13776322268327552644536712 ~2018
13776569762327553139524712 ~2018
13777045124327554090248712 ~2018
13777581719927555163439912 ~2018
1377804311839809...00229714 2023
13779167297927558334595912 ~2018
13781443475927562886951912 ~2018
13782520196327565040392712 ~2018
1378499060813308...45944114 2024
13787087899127574175798312 ~2018
13787642423927575284847912 ~2018
13787900435927575800871912 ~2018
13789026467927578052935912 ~2018
1379060962331994...15291915 2023
13792214155127584428310312 ~2018
13792260800327584521600712 ~2018
13793018561927586037123912 ~2018
13793725874327587451748712 ~2018
13795038302327590076604712 ~2018
13797606476327595212952712 ~2018
Home
4.768.925 digits
e-mail
25-05-04