Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
24072387545948144775091912 ~2020
24073886039948147772079912 ~2020
24078042877148156085754312 ~2020
24080963042348161926084712 ~2020
24081099989948162199979912 ~2020
24081729841148163459682312 ~2020
24083374793948166749587912 ~2020
24083529233948167058467912 ~2020
24083878094348167756188712 ~2020
24084064873148168129746312 ~2020
2408721460631040...09921715 2023
24087327131948174654263912 ~2020
24087813301148175626602312 ~2020
24087870401948175740803912 ~2020
24088599821948177199643912 ~2020
24088615763948177231527912 ~2020
24090248054348180496108712 ~2020
2409176791812457...27646314 2024
24091918322348183836644712 ~2020
24096975271148193950542312 ~2020
24097536773948195073547912 ~2020
24098380610348196761220712 ~2020
24099964184348199928368712 ~2020
24101168498348202336996712 ~2020
24102234569948204469139912 ~2020
Exponent Prime Factor Dig. Year
24106561507148213123014312 ~2020
24107514665948215029331912 ~2020
24107643836348215287672712 ~2020
24109236851948218473703912 ~2020
24111947438348223894876712 ~2020
24118365073148236730146312 ~2020
24118718477948237436955912 ~2020
24121207700348242415400712 ~2020
24121889183948243778367912 ~2020
24122688215948245376431912 ~2020
24122689907948245379815912 ~2020
24123603529148247207058312 ~2020
24124469870348248939740712 ~2020
24124541645948249083291912 ~2020
24133450400348266900800712 ~2020
24134978435948269956871912 ~2020
24136388354348272776708712 ~2020
24137736235148275472470312 ~2020
24139371649148278743298312 ~2020
24139874011148279748022312 ~2020
24140182403948280364807912 ~2020
24141537950348283075900712 ~2020
24141940427948283880855912 ~2020
24142357267148284714534312 ~2020
24142892720348285785440712 ~2020
Exponent Prime Factor Dig. Year
24142907024348285814048712 ~2020
24143545889948287091779912 ~2020
24145408688348290817376712 ~2020
24145703108348291406216712 ~2020
24147118955948294237911912 ~2020
2414871547932269...55054314 2024
24148814275148297628550312 ~2020
24150340142348300680284712 ~2020
24151842683948303685367912 ~2020
24154894525148309789050312 ~2020
24157501781948315003563912 ~2020
24162721271948325442543912 ~2020
24163480123148326960246312 ~2020
2416524400494204...56852714 2023
24165511103948331022207912 ~2020
24166531148348333062296712 ~2020
2416712812193915...55747914 2023
24168036551948336073103912 ~2020
24168053335148336106670312 ~2020
24169123742348338247484712 ~2020
24170483903948340967807912 ~2020
24171339949148342679898312 ~2020
24174865651148349731302312 ~2020
24175484000348350968000712 ~2020
24176065549148352131098312 ~2020
Exponent Prime Factor Dig. Year
24176451008348352902016712 ~2020
24178779955148357559910312 ~2020
24179147792348358295584712 ~2020
2417915406673288...53071314 2024
24179550725948359101451912 ~2020
24180410210348360820420712 ~2020
24183155417948366310835912 ~2020
24187555850348375111700712 ~2020
24187881589148375763178312 ~2020
24190758791948381517583912 ~2020
24191115145148382230290312 ~2020
2419321276672370...51136714 2024
24194320057148388640114312 ~2020
24201442145948402884291912 ~2020
24206615311148413230622312 ~2020
24207631651148415263302312 ~2020
24208818851948417637703912 ~2020
24210946829948421893659912 ~2020
24212470838348424941676712 ~2020
2421434422392712...53076914 2024
24217762808348435525616712 ~2020
24222882781148445765562312 ~2020
2422297540733633...11095114 2024
24224137903148448275806312 ~2020
24226157516348452315032712 ~2020
Home
4.679.597 digits
e-mail
25-03-23