Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13601022911927202045823912 ~2018
13601523559127203047118312 ~2018
1360187507935223...30451314 2023
13604745107927209490215912 ~2018
13606353943127212707886312 ~2018
13608591121127217182242312 ~2018
13608610034327217220068712 ~2018
13611245269127222490538312 ~2018
13612089397127224178794312 ~2018
1361360624712940...49373714 2024
13613813270327227626540712 ~2018
13613911712327227823424712 ~2018
13613950604327227901208712 ~2018
13614143635127228287270312 ~2018
13615006592327230013184712 ~2018
13616398265927232796531912 ~2018
13616804503127233609006312 ~2018
13618002338327236004676712 ~2018
13618363865927236727731912 ~2018
13618979159927237958319912 ~2018
13619454482327238908964712 ~2018
13621025363927242050727912 ~2018
13621942274327243884548712 ~2018
13622293079927244586159912 ~2018
13622825777927245651555912 ~2018
Exponent Prime Factor Dig. Year
13622916512327245833024712 ~2018
13624007990327248015980712 ~2018
13624687417127249374834312 ~2018
13624726826327249453652712 ~2018
13625300785127250601570312 ~2018
13625507129927251014259912 ~2018
13626303890327252607780712 ~2018
13627905092327255810184712 ~2018
13629841880327259683760712 ~2018
13631471405927262942811912 ~2018
13631727170327263454340712 ~2018
13631836967927263673935912 ~2018
1363209056634190...00806315 2025
1363230527294569...74760915 2025
13633455965927266911931912 ~2018
13633463005127266926010312 ~2018
13634771750327269543500712 ~2018
13634789809127269579618312 ~2018
13639841929127279683858312 ~2018
13643646284327287292568712 ~2018
13644433759127288867518312 ~2018
13646321653127292643306312 ~2018
13647167309927294334619912 ~2018
13647361436327294722872712 ~2018
13649315516327298631032712 ~2018
Exponent Prime Factor Dig. Year
13649550728327299101456712 ~2018
13650225860327300451720712 ~2018
13651047236327302094472712 ~2018
13652754299927305508599912 ~2018
13653414389927306828779912 ~2018
13653500707127307001414312 ~2018
13654725788327309451576712 ~2018
13655362799927310725599912 ~2018
13656861349127313722698312 ~2018
13658439067127316878134312 ~2018
13659204485927318408971912 ~2018
13661359142327322718284712 ~2018
13664801947127329603894312 ~2018
13665172616327330345232712 ~2018
13665420889127330841778312 ~2018
13666285273127332570546312 ~2018
13667602202327335204404712 ~2018
13667789675927335579351912 ~2018
13668035672327336071344712 ~2018
13668556819127337113638312 ~2018
13670258497127340516994312 ~2018
13670548499927341096999912 ~2018
13670698315127341396630312 ~2018
13670795405927341590811912 ~2018
13670845271927341690543912 ~2018
Exponent Prime Factor Dig. Year
13672732916327345465832712 ~2018
13673968475927347936951912 ~2018
1367505674894895...16106314 2024
13675076723927350153447912 ~2018
13675581443927351162887912 ~2018
13677207626327354415252712 ~2018
13678612063127357224126312 ~2018
13678737761927357475523912 ~2018
13679021215127358042430312 ~2018
13679035903127358071806312 ~2018
13681802021927363604043912 ~2018
13682966275127365932550312 ~2018
13685067745127370135490312 ~2018
13686558440327373116880712 ~2018
13690171721927380343443912 ~2018
13691372294327382744588712 ~2018
13694538986327389077972712 ~2018
13695067667927390135335912 ~2018
13696666523927393333047912 ~2018
13696977584327393955168712 ~2018
13697249354327394498708712 ~2018
13697571965927395143931912 ~2018
13697772025127395544050312 ~2018
13697819816327395639632712 ~2018
13700840933927401681867912 ~2018
Home
4.768.925 digits
e-mail
25-05-04