Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1352875262511875...38388715 2024
13529097704327058195408712 ~2018
13530511688327061023376712 ~2018
13530546431927061092863912 ~2018
13531255961927062511923912 ~2018
13531300945127062601890312 ~2018
13532779889927065559779912 ~2018
13533119501927066239003912 ~2018
13533482039927066964079912 ~2018
13534669496327069338992712 ~2018
13534963499927069926999912 ~2018
13535254496327070508992712 ~2018
13535974055927071948111912 ~2018
13536085868327072171736712 ~2018
13536616556327073233112712 ~2018
13537085731127074171462312 ~2018
13537142201927074284403912 ~2018
13537790141927075580283912 ~2018
13538052275927076104551912 ~2018
1353969340811516...61707314 2025
13539981881927079963763912 ~2018
13540415635127080831270312 ~2018
13540893626327081787252712 ~2018
13541134532327082269064712 ~2018
13541460493127082920986312 ~2018
Exponent Prime Factor Dig. Year
13541490698327082981396712 ~2018
13542068822327084137644712 ~2018
13543919353127087838706312 ~2018
13544039153927088078307912 ~2018
13549153331927098306663912 ~2018
13549805018327099610036712 ~2018
13550781785927101563571912 ~2018
13550913193127101826386312 ~2018
13551110809127102221618312 ~2018
13551192245927102384491912 ~2018
13551357998327102715996712 ~2018
13552266301127104532602312 ~2018
13552375958327104751916712 ~2018
13552488097127104976194312 ~2018
13553239352327106478704712 ~2018
13553879581127107759162312 ~2018
13554307544327108615088712 ~2018
13554463808327108927616712 ~2018
13555731629927111463259912 ~2018
13556881892327113763784712 ~2018
13557158513927114317027912 ~2018
13557549590327115099180712 ~2018
13557858134327115716268712 ~2018
13558655678327117311356712 ~2018
13559455301927118910603912 ~2018
Exponent Prime Factor Dig. Year
13561112693927122225387912 ~2018
13561431056327122862112712 ~2018
13561867219127123734438312 ~2018
13562751025127125502050312 ~2018
13563813092327127626184712 ~2018
1356637021013255...50424114 2024
13566520325927133040651912 ~2018
13567720727927135441455912 ~2018
13569255713927138511427912 ~2018
1356931797611278...33486315 2023
13569650942327139301884712 ~2018
13570361498327140722996712 ~2018
13572271097927144542195912 ~2018
1357258430698143...84140114 2025
13573586993927147173987912 ~2018
13573752431927147504863912 ~2018
13573878677927147757355912 ~2018
13574487841127148975682312 ~2018
13575622759127151245518312 ~2018
13575843524327151687048712 ~2018
1357627934293801...16012114 2024
13576995476327153990952712 ~2018
13577238176327154476352712 ~2018
13577517761927155035523912 ~2018
13578622958327157245916712 ~2018
Exponent Prime Factor Dig. Year
13580067121127160134242312 ~2018
13581963275927163926551912 ~2018
13582799828327165599656712 ~2018
13583005991927166011983912 ~2018
13584928940327169857880712 ~2018
13587122891927174245783912 ~2018
13587304736327174609472712 ~2018
13587415691927174831383912 ~2018
13588980251927177960503912 ~2018
13589392721927178785443912 ~2018
13589847313127179694626312 ~2018
1359101346971247...65184715 2025
13592504474327185008948712 ~2018
13592763668327185527336712 ~2018
13592987797127185975594312 ~2018
13593301562327186603124712 ~2018
13594292861927188585723912 ~2018
13595095901927190191803912 ~2018
13595247947927190495895912 ~2018
13598219834327196439668712 ~2018
13598554513127197109026312 ~2018
13599199915127198399830312 ~2018
13599807800327199615600712 ~2018
13599843415127199686830312 ~2018
13600859755127201719510312 ~2018
Home
4.768.925 digits
e-mail
25-05-04