Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
186143044913722860898311 ~2011
186155326793723106535911 ~2011
1861579925311169479551912 ~2012
186164554793723291095911 ~2011
186164681633723293632711 ~2011
186164750513723295010311 ~2011
186166462313723329246311 ~2011
186168202193723364043911 ~2011
186180801713723616034311 ~2011
186187542113723750842311 ~2011
1861904127711171424766312 ~2012
186193085633723861712711 ~2011
186193920233723878404711 ~2011
186200601113724012022311 ~2011
186202454633724049092711 ~2011
1862027765311172166591912 ~2012
186203703113724074062311 ~2011
1862081735311172490411912 ~2012
186212719193724254383911 ~2011
186222048233724440964711 ~2011
1862274285711173645714312 ~2012
1862289423711173736542312 ~2012
1862297167114898377336912 ~2013
186248174393724963487911 ~2011
1862521231344700509551312 ~2014
Exponent Prime Factor Dig. Year
1862614975711175689854312 ~2012
1862630239711175781438312 ~2012
1862634931114901079448912 ~2013
1862649719914901197759312 ~2013
186270124793725402495911 ~2011
186272303993725446079911 ~2011
1862724425311176346551912 ~2012
1862738749711176432498312 ~2012
186277210433725544208711 ~2011
186289220513725784410311 ~2011
1862910111129806561777712 ~2013
1863046391311178278347912 ~2012
186323562713726471254311 ~2011
186324012833726480256711 ~2011
1863425980111180555880712 ~2012
186345182633726903652711 ~2011
186349568033726991360711 ~2011
186354257993727085159911 ~2011
186364983713727299674311 ~2011
186376577393727531547911 ~2011
186378511313727570226311 ~2011
1863935935711183615614312 ~2012
1863950111914911600895312 ~2013
186395879033727917580711 ~2011
186396712433727934248711 ~2011
Exponent Prime Factor Dig. Year
186403339793728066795911 ~2011
1864189699311185138195912 ~2012
1864210247326098943462312 ~2013
186431980433728639608711 ~2011
186436981193728739623911 ~2011
1864404535311186427211912 ~2012
1864450645918644506459112 ~2013
186452832593729056651911 ~2011
186455283833729105676711 ~2011
186471604913729432098311 ~2011
186476811833729536236711 ~2011
186495269393729905387911 ~2011
1865091832329841469316912 ~2013
186510267833730205356711 ~2011
1865137853311190827119912 ~2012
186541785833730835716711 ~2011
186542863313730857266311 ~2011
186543177233730863544711 ~2011
186554619113731092382311 ~2011
186558489833731169796711 ~2011
186563630513731272610311 ~2011
186577517513731550350311 ~2011
186579230993731584619911 ~2011
186583168193731663363911 ~2011
186587472593731749451911 ~2011
Exponent Prime Factor Dig. Year
186589235393731784707911 ~2011
1865956521711195739130312 ~2012
1866099457918660994579112 ~2013
1866464259711198785558312 ~2012
186647910593732958211911 ~2011
1866565564714932524517712 ~2013
186669009713733380194311 ~2011
186669459593733389191911 ~2011
186679979513733599590311 ~2011
186682088033733641760711 ~2011
186683135633733662712711 ~2011
186687370193733747403911 ~2011
1866890640718668906407112 ~2013
1866926848329870829572912 ~2013
186706705193734134103911 ~2011
1867105861714936846893712 ~2013
1867229361129875669777712 ~2013
186726691313734533826311 ~2011
186728088593734561771911 ~2011
1867315771711203894630312 ~2012
186732275393734645507911 ~2011
186749603033734992060711 ~2011
186752076713735041534311 ~2011
1867563766111205382596712 ~2012
186765796433735315928711 ~2011
Home
5.247.179 digits
e-mail
25-12-14