Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11046912032322093824064712 ~2017
11048036765922096073531912 ~2017
11048321833766289931002312 ~2018
11048683105122097366210312 ~2017
11049341921922098683843912 ~2017
11049866203366299197219912 ~2018
1105026422691657...34035114 2024
11050481063922100962127912 ~2017
11050643300322101286600712 ~2017
11051347699366308086195912 ~2018
11052592514322105185028712 ~2017
11052702595122105405190312 ~2017
1105338489111790...52358314 2024
1105462209016610...09879914 2023
11056205053122112410106312 ~2017
11056610864322113221728712 ~2017
11056660400322113320800712 ~2017
11057555431122115110862312 ~2017
11059765507122119531014312 ~2017
11060073921766360443530312 ~2018
11060163026322120326052712 ~2017
11061667153122123334306312 ~2017
11061673241922123346483912 ~2017
11064396158322128792316712 ~2017
11065223609922130447219912 ~2017
Exponent Prime Factor Dig. Year
11065288949922130577899912 ~2017
11065359524322130719048712 ~2017
11065681091922131362183912 ~2017
11065708477122131416954312 ~2017
11065715297922131430595912 ~2017
11066364590322132729180712 ~2017
11067154373922134308747912 ~2017
11069397997122138795994312 ~2017
11069454599922138909199912 ~2017
11070066319122140132638312 ~2017
11070740927366424445563912 ~2018
11070944737122141889474312 ~2017
11071352621922142705243912 ~2017
11072612375922145224751912 ~2017
11073085634322146171268712 ~2017
11073652945122147305890312 ~2017
11073663191922147326383912 ~2017
1107404080812834...46873714 2024
11074218212322148436424712 ~2017
11074311530322148623060712 ~2017
11074615773766447694642312 ~2018
11075362580322150725160712 ~2017
11075529185922151058371912 ~2017
11076363011922152726023912 ~2017
11076424513122152849026312 ~2017
Exponent Prime Factor Dig. Year
1107676935291089...43253715 2025
1107786583911604...35016915 2024
11078999690322157999380712 ~2017
11079139687122158279374312 ~2017
11079179460166475076760712 ~2018
11080076603922160153207912 ~2017
11080080875922160161751912 ~2017
11080454827122160909654312 ~2017
11081087690322162175380712 ~2017
11081534555922163069111912 ~2017
11081735885922163471771912 ~2017
11082864281922165728563912 ~2017
11083515099766501090598312 ~2018
11084431454322168862908712 ~2017
11085395204322170790408712 ~2017
11085793249122171586498312 ~2017
11085921959922171843919912 ~2017
11086144905766516869434312 ~2018
11087980856322175961712712 ~2017
11088615806322177231612712 ~2017
11089042631922178085263912 ~2017
11089637429922179274859912 ~2017
11090512121922181024243912 ~2017
11090878747122181757494312 ~2017
11093130962322186261924712 ~2017
Exponent Prime Factor Dig. Year
11094221605122188443210312 ~2017
11094755897922189511795912 ~2017
11094986545122189973090312 ~2017
11095156430322190312860712 ~2017
11096736623922193473247912 ~2017
11097656017122195312034312 ~2017
11097692426322195384852712 ~2017
11097973381122195946762312 ~2017
11098545111766591270670312 ~2018
11099453342322198906684712 ~2017
11100301399122200602798312 ~2017
11100500153922201000307912 ~2017
11100610397922201220795912 ~2017
11100750253122201500506312 ~2017
11101602161922203204323912 ~2017
11101608093766609648562312 ~2018
11101782559122203565118312 ~2017
11102008495122204016990312 ~2017
11102196506322204393012712 ~2017
11102685439122205370878312 ~2017
11103628535922207257071912 ~2017
11104565093922209130187912 ~2017
11104806971922209613943912 ~2017
11105312737122210625474312 ~2017
11105467661922210935323912 ~2017
Home
4.768.925 digits
e-mail
25-05-04