Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10985813900321971627800712 ~2017
10986343064321972686128712 ~2017
10986841117121973682234312 ~2017
10987449698321974899396712 ~2017
10988465851121976931702312 ~2017
10988703223121977406446312 ~2017
10988714221765932285330312 ~2018
10988946619121977893238312 ~2017
10989114007121978228014312 ~2017
10989167461121978334922312 ~2017
10991680819365950084915912 ~2018
10993097171921986194343912 ~2017
1099382039292440...27223914 2024
10994453889765966723338312 ~2018
10994595221921989190443912 ~2017
10996250047121992500094312 ~2017
10997102456321994204912712 ~2017
10998704426321997408852712 ~2017
1099905088091819...57008715 2024
10999140011921998280023912 ~2017
10999650590321999301180712 ~2017
11000601925122001203850312 ~2017
1100091443212992...25531314 2024
11001552031122003104062312 ~2017
11002102927766012617566312 ~2018
Exponent Prime Factor Dig. Year
1100273579693850...28915114 2023
1100362428371103...65511116 2025
11003873369922007746739912 ~2017
11004294421122008588842312 ~2017
11004319257766025915546312 ~2018
11004533927922009067855912 ~2017
11004976754322009953508712 ~2017
11005795393122011590786312 ~2017
1100592821212729...96600914 2024
11005933592322011867184712 ~2017
11006426599122012853198312 ~2017
11006520536322013041072712 ~2017
11006636821122013273642312 ~2017
11006994593922013989187912 ~2017
11007032384322014064768712 ~2017
11007306617922014613235912 ~2017
11008320668322016641336712 ~2017
11011116929922022233859912 ~2017
11013261113922026522227912 ~2017
11013529846166081179076712 ~2018
11013609235122027218470312 ~2017
1101452647311844...18532716 2025
11014760180322029520360712 ~2017
11018034649122036069298312 ~2017
11018538326322037076652712 ~2017
Exponent Prime Factor Dig. Year
11019112085922038224171912 ~2017
11019144043366114864259912 ~2018
11019509749766117058498312 ~2018
11019599522322039199044712 ~2017
11019645374322039290748712 ~2017
11020072673922040145347912 ~2017
11020186205366121117231912 ~2018
11020299932322040599864712 ~2017
11020339303122040678606312 ~2017
11021426617122042853234312 ~2017
11021596579122043193158312 ~2017
11022656690322045313380712 ~2017
11023292282322046584564712 ~2017
11024338957766146033746312 ~2018
11024357083122048714166312 ~2017
11025580711366153484267912 ~2018
11025953677122051907354312 ~2017
11026062919122052125838312 ~2017
11026504547922053009095912 ~2017
11027091551922054183103912 ~2017
11027586659366165519955912 ~2018
11027695057122055390114312 ~2017
11028652159122057304318312 ~2017
11029027718322058055436712 ~2017
11029655755766177934534312 ~2018
Exponent Prime Factor Dig. Year
11030708498322061416996712 ~2017
11030723618322061447236712 ~2017
11031192644322062385288712 ~2017
11032319567922064639135912 ~2017
11033996948322067993896712 ~2017
11035015817922070031635912 ~2017
11036454955122072909910312 ~2017
1103657151713995...89190314 2023
11038358981922076717963912 ~2017
11038607615922077215231912 ~2017
11039426912322078853824712 ~2017
11040275491122080550982312 ~2017
11040805866166244835196712 ~2018
11040882959922081765919912 ~2017
11040929867922081859735912 ~2017
11041609679922083219359912 ~2017
11042314376322084628752712 ~2017
11042766461922085532923912 ~2017
11043052181922086104363912 ~2017
11043644462322087288924712 ~2017
11043838520322087677040712 ~2017
11044576649922089153299912 ~2017
11044855055922089710111912 ~2017
11045163074322090326148712 ~2017
11046427989766278567938312 ~2018
Home
4.768.925 digits
e-mail
25-05-04