Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7547911493960383291951312 ~2017
7548595901915097191803912 ~2016
7549150886315098301772712 ~2016
7549518127115099036254312 ~2016
7549521822145297130932712 ~2017
7549787897915099575795912 ~2016
7550759265175507592651112 ~2018
7550904103345305424619912 ~2017
7551285857915102571715912 ~2016
7551621200315103242400712 ~2016
7551682157345310092943912 ~2017
7551947715745311686294312 ~2017
7552320223115104640446312 ~2016
7552558021115105116042312 ~2016
7552564406315105128812712 ~2016
7552972340315105944680712 ~2016
7553235128315106470256712 ~2016
7553243254145319459524712 ~2017
7553530889915107061779912 ~2016
7553554250315107108500712 ~2016
7553949322375539493223112 ~2018
7554070777115108141554312 ~2016
7554158768315108317536712 ~2016
7554422251345326533507912 ~2017
7554712481345328274887912 ~2017
Exponent Prime Factor Dig. Year
7554761447915109522895912 ~2016
7555081345115110162690312 ~2016
7555265972960442127783312 ~2017
7555407348145332444088712 ~2017
7555461620960443692967312 ~2017
7555770266315111540532712 ~2016
7558225879760465807037712 ~2017
7558437853115116875706312 ~2016
7558632026315117264052712 ~2016
7558648742315117297484712 ~2016
7558896221915117792443912 ~2016
7558971653915117943307912 ~2016
7559282359115118564718312 ~2016
7560107113115120214226312 ~2016
7560832362145364994172712 ~2017
7560862886315121725772712 ~2016
7561001615915122003231912 ~2016
7561242337160489938696912 ~2017
7561483153115122966306312 ~2016
7562205015175622050151112 ~2018
7563090683915126181367912 ~2016
7563635645915127271291912 ~2016
7564183571915128367143912 ~2016
7564320020315128640040712 ~2016
7564335091760514680733712 ~2017
Exponent Prime Factor Dig. Year
7564400768315128801536712 ~2016
7564475558315128951116712 ~2016
7564787521115129575042312 ~2016
7564946291345389677747912 ~2017
7564995791915129991583912 ~2016
7565190505115130381010312 ~2016
7565277187115130554374312 ~2016
7565352563915130705127912 ~2016
7565774719745394648318312 ~2017
7566201131915132402263912 ~2016
7566399617915132799235912 ~2016
7566612212315133224424712 ~2016
7566903017915133806035912 ~2016
7567275221915134550443912 ~2016
7567447705115134895410312 ~2016
7567836577115135673154312 ~2016
7568140775915136281551912 ~2016
7568428799915136857599912 ~2016
7568590939115137181878312 ~2016
7569285419915138570839912 ~2016
7569414677915138829355912 ~2016
7569415766315138831532712 ~2016
7569962357915139924715912 ~2016
7570162135115140324270312 ~2016
7570343385745422060314312 ~2017
Exponent Prime Factor Dig. Year
7570359049115140718098312 ~2016
7571627759915143255519912 ~2016
7571785050145430710300712 ~2017
7571908396760575267173712 ~2017
7572216332960577730663312 ~2017
7572354649975723546499112 ~2018
7572472238315144944476712 ~2016
7572685021115145370042312 ~2016
7573084835345438509011912 ~2017
7573583239115147166478312 ~2016
7573605437915147210875912 ~2016
7574024683115148049366312 ~2016
7574029628315148059256712 ~2016
7575021134315150042268712 ~2016
7575473065115150946130312 ~2016
7577131892315154263784712 ~2016
7577496727760619973821712 ~2017
7577556799345465340795912 ~2017
7577720532145466323192712 ~2017
7579002734315158005468712 ~2016
7579021963975790219639112 ~2018
7579238917115158477834312 ~2016
7579431512315158863024712 ~2016
7580307332315160614664712 ~2016
7581793261160654346088912 ~2017
Home
4.768.925 digits
e-mail
25-05-04