Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11218951334322437902668712 ~2017
11219094499767314566998312 ~2018
11219279701122438559402312 ~2017
11219942210322439884420712 ~2017
11220001388322440002776712 ~2017
11220452636322440905272712 ~2017
11221077841122442155682312 ~2017
11222033132322444066264712 ~2017
11222332505922444665011912 ~2017
11222804734167336828404712 ~2018
11226117985122452235970312 ~2017
11226344672322452689344712 ~2017
11226714473922453428947912 ~2017
11227628935122455257870312 ~2017
11227722536322455445072712 ~2017
11227758553122455517106312 ~2017
11228639233122457278466312 ~2017
11229093889122458187778312 ~2017
11229222516167375335096712 ~2018
11229427129122458854258312 ~2017
11229735032322459470064712 ~2017
11229896261922459792523912 ~2017
11231133320322462266640712 ~2017
11231311897122462623794312 ~2017
11231384120322462768240712 ~2017
Exponent Prime Factor Dig. Year
11231518904322463037808712 ~2017
11231535101922463070203912 ~2017
11232127082322464254164712 ~2017
11232805787922465611575912 ~2017
11233047675767398286054312 ~2018
11233390982322466781964712 ~2017
11234756593122469513186312 ~2017
11234972135922469944271912 ~2017
11235389819922470779639912 ~2017
11235410834322470821668712 ~2017
11237521328322475042656712 ~2017
11239446889122478893778312 ~2017
11239730831922479461663912 ~2017
11240055872322480111744712 ~2017
11240173247922480346495912 ~2017
11240823175122481646350312 ~2017
11240912792322481825584712 ~2017
11241287785122482575570312 ~2017
11241690387767450142326312 ~2018
11241868337922483736675912 ~2017
11242220243922484440487912 ~2017
11242943033922485886067912 ~2017
11243096282322486192564712 ~2017
11243145563922486291127912 ~2017
11243203217367459219303912 ~2018
Exponent Prime Factor Dig. Year
11243509855122487019710312 ~2017
11245008128322490016256712 ~2017
11245048613922490097227912 ~2017
11245514351922491028703912 ~2017
1124580603733184...97633715 2025
11245840475922491680951912 ~2017
11246211917922492423835912 ~2017
11246980165122493960330312 ~2017
11247262889922494525779912 ~2017
11248773787122497547574312 ~2017
11250963619122501927238312 ~2017
11251263952167507583712712 ~2018
11252255497122504510994312 ~2017
11252764789122505529578312 ~2017
11253235667922506471335912 ~2017
11253768331122507536662312 ~2017
11254164098322508328196712 ~2017
11254398625122508797250312 ~2017
11254912322322509824644712 ~2017
11255236901922510473803912 ~2017
11256716821122513433642312 ~2017
11256776327922513552655912 ~2017
11257945469922515890939912 ~2017
11258227380167549364280712 ~2018
11259079285122518158570312 ~2017
Exponent Prime Factor Dig. Year
11259139517922518279035912 ~2017
11259346474167556078844712 ~2018
11260477403922520954807912 ~2017
11260755748167564534488712 ~2018
11260832732322521665464712 ~2017
11261797207367570783243912 ~2018
11261801804322523603608712 ~2017
11261835969767571015818312 ~2018
11262875717922525751435912 ~2017
11263434956322526869912712 ~2017
11264138430167584830580712 ~2018
11264547731922529095463912 ~2017
11264754756167588528536712 ~2018
11265942146322531884292712 ~2017
11266066411122532132822312 ~2017
11266249004322532498008712 ~2017
11266867835922533735671912 ~2017
11267081315922534162631912 ~2017
11267526716322535053432712 ~2017
11267945342322535890684712 ~2017
11267953847922535907695912 ~2017
11268219758322536439516712 ~2017
1126829613715611...76275914 2023
11268467183922536934367912 ~2017
11268748031922537496063912 ~2017
Home
4.679.597 digits
e-mail
25-03-23