Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6896763601113793527202312 ~2016
6896986137741381916826312 ~2017
6897067531113794135062312 ~2016
6897710987913795421975912 ~2016
6898136609913796273219912 ~2016
6898379747913796759495912 ~2016
6898565302141391391812712 ~2017
6898902419913797804839912 ~2016
6898906693113797813386312 ~2016
6899742680955197941447312 ~2017
6899755406313799510812712 ~2016
6900103724313800207448712 ~2016
6900104821113800209642312 ~2016
6900179206141401075236712 ~2017
6900990601341405943607912 ~2017
6901216844313802433688712 ~2016
6901603687113803207374312 ~2016
6901730429913803460859912 ~2016
6901827290313803654580712 ~2016
6902262020313804524040712 ~2016
6902286545913804573091912 ~2016
6902619693741415718162312 ~2017
6902634014313805268028712 ~2016
6902822699913805645399912 ~2016
6903948727741423692366312 ~2017
Exponent Prime Factor Dig. Year
6903953659113807907318312 ~2016
6905875202313811750404712 ~2016
6905879083113811758166312 ~2016
6905978975913811957951912 ~2016
6906050621913812101243912 ~2016
6906459978141438759868712 ~2017
690699876474309...29172914 2023
6907084519113814169038312 ~2016
6907761737913815523475912 ~2016
690798158292540...61906315 2025
6908730120141452380720712 ~2017
6908907044313817814088712 ~2016
6908910133113817820266312 ~2016
6908996255913817992511912 ~2016
6909467030313818934060712 ~2016
6909523181913819046363912 ~2016
6909807463113819614926312 ~2016
6909874595913819749191912 ~2016
6910067084313820134168712 ~2016
6910517521113821035042312 ~2016
6910605230313821210460712 ~2016
6910725295341464351771912 ~2017
6910871177913821742355912 ~2016
6911004761913822009523912 ~2016
6911101930369111019303112 ~2017
Exponent Prime Factor Dig. Year
6911203706313822407412712 ~2016
6911790935913823581871912 ~2016
6912133196313824266392712 ~2016
6912219512313824439024712 ~2016
6912275282313824550564712 ~2016
6912392102955299136823312 ~2017
6912716834313825433668712 ~2016
6912735236313825470472712 ~2016
6912806105913825612211912 ~2016
6913414501113826829002312 ~2016
6913821307113827642614312 ~2016
6913858502313827717004712 ~2016
6914056435113828112870312 ~2016
6914173081113828346162312 ~2016
6914385956313828771912712 ~2016
6914405618313828811236712 ~2016
6914479285113828958570312 ~2016
6914769786769147697867112 ~2017
6915099977913830199955912 ~2016
6915201239955321609919312 ~2017
6915394289913830788579912 ~2016
6915628642155325029136912 ~2017
6917929118313835858236712 ~2016
691795740311729...50775114 2023
6918282799113836565598312 ~2016
Exponent Prime Factor Dig. Year
6918459421113836918842312 ~2016
6918651047913837302095912 ~2016
6918664772313837329544712 ~2016
6918855763113837711526312 ~2016
6919096332141514577992712 ~2017
6919135895913838271791912 ~2016
6919444947741516669686312 ~2017
6919689055113839378110312 ~2016
6919810651113839621302312 ~2016
6919820353113839640706312 ~2016
6919920985113839841970312 ~2016
6921512662141529075972712 ~2017
6921591940369215919403112 ~2017
6921876412369218764123112 ~2017
6922347347913844694695912 ~2016
6922728553113845457106312 ~2016
6922993789113845987578312 ~2016
6923566772313847133544712 ~2016
6923888615913847777231912 ~2016
6923993735913847987471912 ~2016
6924545792313849091584712 ~2016
6925024811341550148867912 ~2017
6926135383113852270766312 ~2016
6926236788769262367887112 ~2017
6926247308313852494616712 ~2016
Home
4.768.925 digits
e-mail
25-05-04