Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9981313564159887881384712 ~2018
9982277227119964554454312 ~2017
9982308181119964616362312 ~2017
9984541477119969082954312 ~2017
9985369771119970739542312 ~2017
9985448773119970897546312 ~2017
998582784312366...88147115 2023
9986661097119973322194312 ~2017
9988484756319976969512712 ~2017
9989104463919978208927912 ~2017
9989149670319978299340712 ~2017
9989727241119979454482312 ~2017
9990163421919980326843912 ~2017
9992036621919984073243912 ~2017
9992393695119984787390312 ~2017
9993551783359961310699912 ~2018
9995103128319990206256712 ~2017
9995266760319990533520712 ~2017
9995533292319991066584712 ~2017
9995708239119991416478312 ~2017
9995839427919991678855912 ~2017
9995929499919991858999912 ~2017
9997035823119994071646312 ~2017
9997621328319995242656712 ~2017
9998032451919996064903912 ~2017
Exponent Prime Factor Dig. Year
9998053868319996107736712 ~2017
9999328382319998656764712 ~2017
10001484597760008907586312 ~2018
10001553746320003107492712 ~2017
10002982729120005965458312 ~2017
10003801423120007602846312 ~2017
10003917710320007835420712 ~2017
10005846997120011693994312 ~2017
10005869458160035216748712 ~2018
10006097747920012195495912 ~2017
1000629889373662...95094314 2024
10006367279920012734559912 ~2017
1000670163371158...91824715 2025
10008131102320016262204712 ~2017
10008257393920016514787912 ~2017
10009430281120018860562312 ~2017
10010270189920020540379912 ~2017
10010301461920020602923912 ~2017
10010563393120021126786312 ~2017
10010781739120021563478312 ~2017
10010952643120021905286312 ~2017
10011218981920022437963912 ~2017
10011731126320023462252712 ~2017
10012362200320024724400712 ~2017
10012548578320025097156712 ~2017
Exponent Prime Factor Dig. Year
10012705454320025410908712 ~2017
10013727007120027454014312 ~2017
10014406105120028812210312 ~2017
10014668825920029337651912 ~2017
10014904249120029808498312 ~2017
10016440727920032881455912 ~2017
10016459653120032919306312 ~2017
10017287527760103725166312 ~2018
10017568583920035137167912 ~2017
10018206668320036413336712 ~2017
10018210643920036421287912 ~2017
10018366118320036732236712 ~2017
10018927093120037854186312 ~2017
10018929019120037858038312 ~2017
10019329694320038659388712 ~2017
10019344565920038689131912 ~2017
10019973674320039947348712 ~2017
10020826711120041653422312 ~2017
10021766066320043532132712 ~2017
10021875317920043750635912 ~2017
10022457565120044915130312 ~2017
1002455279892385...66138314 2024
10025203100320050406200712 ~2017
10025237420320050474840712 ~2017
10026843595120053687190312 ~2017
Exponent Prime Factor Dig. Year
10029599503120059199006312 ~2017
10029985847920059971695912 ~2017
10030308835120060617670312 ~2017
10030736222320061472444712 ~2017
10031003117920062006235912 ~2017
10031165705920062331411912 ~2017
10031998412320063996824712 ~2017
10032259295920064518591912 ~2017
10033924855360203549131912 ~2018
10034916008320069832016712 ~2017
10035038623120070077246312 ~2017
10035667265920071334531912 ~2017
10036774553920073549107912 ~2017
10037238631120074477262312 ~2017
10037513129920075026259912 ~2017
10037956242160227737452712 ~2018
10039296785920078593571912 ~2017
10039607911120079215822312 ~2017
10039804496320079608992712 ~2017
10039889321920079778643912 ~2017
10040729420320081458840712 ~2017
10043314009120086628018312 ~2017
10043444905120086889810312 ~2017
10045230187120090460374312 ~2017
10045742080160274452480712 ~2018
Home
4.679.597 digits
e-mail
25-03-23