Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6620895524313241791048712 ~2016
6621027998313242055996712 ~2016
6621041072313242082144712 ~2016
6621062093913242124187912 ~2016
6621140077113242280154312 ~2016
6621204853113242409706312 ~2016
6621506029113243012058312 ~2016
6622021653739732129922312 ~2017
6622200803339733204819912 ~2017
6622303550313244607100712 ~2016
6622603641166226036411112 ~2017
6622892432313245784864712 ~2016
6623604779913247209559912 ~2016
6623699132313247398264712 ~2016
6623850037113247700074312 ~2016
6623882948313247765896712 ~2016
6624106255113248212510312 ~2016
6624490111113248980222312 ~2016
6624541976313249083952712 ~2016
662475301372424...03014314 2023
6624874721913249749443912 ~2016
6625059629913250119259912 ~2016
6625122545913250245091912 ~2016
6625124495913250248991912 ~2016
6625206007113250412014312 ~2016
Exponent Prime Factor Dig. Year
6625434707913250869415912 ~2016
6625443739113250887478312 ~2016
6626336070139758016420712 ~2017
6626740984366267409843112 ~2017
6627011984953016095879312 ~2017
6627114193339762685159912 ~2017
6627146006313254292012712 ~2016
6627150503913254301007912 ~2016
6627245357953017962863312 ~2017
6627389767153019118136912 ~2017
6627506569113255013138312 ~2016
6627708205113255416410312 ~2016
6628446259113256892518312 ~2016
6628613855913257227711912 ~2016
6628730443113257460886312 ~2016
6629302697913258605395912 ~2016
6629540535739777243214312 ~2017
6629545915113259091830312 ~2016
6629628545913259257091912 ~2016
6629743258139778459548712 ~2017
6629861933913259723867912 ~2016
663014875915091...46988914 2023
6630173019739781038118312 ~2017
6630754041739784524250312 ~2017
6630864116313261728232712 ~2016
Exponent Prime Factor Dig. Year
6631201203739787207222312 ~2017
6631512764313263025528712 ~2016
6632089625913264179251912 ~2016
6632257225966322572259112 ~2017
6632734583913265469167912 ~2016
6632901421153063211368912 ~2017
6633031127913266062255912 ~2016
6633328901913266657803912 ~2016
6633411716313266823432712 ~2016
6633417342139800504052712 ~2017
6633519403113267038806312 ~2016
6633752713113267505426312 ~2016
6633945342139803672052712 ~2017
6634200074313268400148712 ~2016
6634983341913269966683912 ~2016
6635180246313270360492712 ~2016
6636041105913272082211912 ~2016
6636420413339818522479912 ~2017
6636433685913272867371912 ~2016
6636498121113272996242312 ~2016
6636639169113273278338312 ~2016
6636896951913273793903912 ~2016
6637597189113275194378312 ~2016
6637850047739827100286312 ~2017
663831202491210...13927116 2025
Exponent Prime Factor Dig. Year
663875066172111...10420714 2023
6639087595339834525571912 ~2017
6639233618313278467236712 ~2016
6639249038313278498076712 ~2016
6640228343913280456687912 ~2016
6640827497913281654995912 ~2016
6640960895913281921791912 ~2016
664106149014622...97109714 2025
6641523152313283046304712 ~2016
6641613326313283226652712 ~2016
6642553003339855318019912 ~2017
6642978905913285957811912 ~2016
6643048537113286097074312 ~2016
6643182324766431823247112 ~2017
6643709894313287419788712 ~2016
6643782590313287565180712 ~2016
6644015867913288031735912 ~2016
6644030192313288060384712 ~2016
6644333312313288666624712 ~2016
6644335505913288671011912 ~2016
6644546630313289093260712 ~2016
6645471487113290942974312 ~2016
6645544028313291088056712 ~2016
6645697439913291394879912 ~2016
6645753553113291507106312 ~2016
Home
4.768.925 digits
e-mail
25-05-04