Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8242039645116484079290312 ~2016
8242156651749452939910312 ~2017
8242232360316484464720712 ~2016
8242359806316484719612712 ~2016
8242426645116484853290312 ~2016
8242494944316484989888712 ~2016
8242632019165941056152912 ~2018
8242877581116485755162312 ~2016
8242962067116485924134312 ~2016
8242992908965943943271312 ~2018
8243137631965945101055312 ~2018
8243158268316486316536712 ~2016
8243219132316486438264712 ~2016
8243897501349463385007912 ~2017
8244170311165953362488912 ~2018
8244359996316488719992712 ~2016
8244429883116488859766312 ~2016
8245030801349470184807912 ~2017
8246615011116493230022312 ~2016
8246665733349479994399912 ~2017
8246700512316493401024712 ~2016
8246785399116493570798312 ~2016
8246989814965975918519312 ~2018
8247317233749483903402312 ~2017
8247883111116495766222312 ~2016
Exponent Prime Factor Dig. Year
8248765762165990126096912 ~2018
8249206135749495236814312 ~2017
8249415445165995323560912 ~2018
8250535727916501071455912 ~2016
8250652714149503916284712 ~2017
8250688465116501376930312 ~2016
8251064977349506389863912 ~2017
8251310600316502621200712 ~2016
8251730459916503460919912 ~2016
8251787539749510725238312 ~2017
8252043229749512259378312 ~2017
8252766221916505532443912 ~2016
8252971495116505942990312 ~2016
825300112693499...77805714 2025
8253229850966025838807312 ~2018
8253270005916506540011912 ~2016
8253827681916507655363912 ~2016
8254749336149528496016712 ~2017
8255828558316511657116712 ~2016
8256473684316512947368712 ~2016
8256651293916513302587912 ~2016
8258226713916516453427912 ~2016
8258343484766066747877712 ~2018
8258516662766068133301712 ~2018
825861629293070...77002315 2023
Exponent Prime Factor Dig. Year
8259303445116518606890312 ~2016
8259964081116519928162312 ~2016
8260580893116521161786312 ~2016
8260761053916521522107912 ~2016
826081710971445...41975115 2025
8261114909966088919279312 ~2018
8261324329116522648658312 ~2016
8261434694316522869388712 ~2016
8261526127116523052254312 ~2016
8261746115349570476691912 ~2017
8262123719916524247439912 ~2016
8262125821116524251642312 ~2016
8262211196316524422392712 ~2016
8262300386316524600772712 ~2016
8262396038316524792076712 ~2016
8262626339916525252679912 ~2016
8262838855349577033131912 ~2017
8263894885116527789770312 ~2016
8264332207116528664414312 ~2016
8264379577116528759154312 ~2016
8264741816316529483632712 ~2016
8265294535166122356280912 ~2018
8265553136316531106272712 ~2016
8266342165116532684330312 ~2016
8267459233166139673864912 ~2018
Exponent Prime Factor Dig. Year
8269520531916539041063912 ~2016
8269533785916539067571912 ~2016
8269736150316539472300712 ~2016
8270056591116540113182312 ~2016
8270129423916540258847912 ~2016
8270264899349621589395912 ~2017
8270513629116541027258312 ~2016
8271109393116542218786312 ~2016
8271562637916543125275912 ~2016
8271660512316543321024712 ~2016
8272669985916545339971912 ~2016
8273224099116546448198312 ~2016
8274041491749644248950312 ~2017
8274648596316549297192712 ~2016
8274958111116549916222312 ~2016
8275350182316550700364712 ~2016
8275411559916550823119912 ~2016
8275595557766204764461712 ~2018
8276184653916552369307912 ~2016
8276312629116552625258312 ~2016
8276462898149658777388712 ~2017
8276666941116553333882312 ~2016
8276712764316553425528712 ~2016
8277121765349662730591912 ~2017
8278293992316556587984712 ~2016
Home
4.768.925 digits
e-mail
25-05-04