Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7474361561914948723123912 ~2016
7474913509114949827018312 ~2016
7475289686314950579372712 ~2016
7475451744144852710464712 ~2017
7475971388314951942776712 ~2016
7476472897114952945794312 ~2016
7476541628314953083256712 ~2016
7476867260314953734520712 ~2016
747700582632631...50857714 2024
7477416734314954833468712 ~2016
7477421138314954842276712 ~2016
7477837729114955675458312 ~2016
7477841617744867049706312 ~2017
7477843909114955687818312 ~2016
7477991659759823933277712 ~2017
7478236423159825891384912 ~2017
7478506007914957012015912 ~2016
7478564515974785645159112 ~2018
7478628614314957257228712 ~2016
7478690462314957380924712 ~2016
7480126292314960252584712 ~2016
7481325475114962650950312 ~2016
7482051373114964102746312 ~2016
7482713596759861708773712 ~2017
7483564087114967128174312 ~2016
Exponent Prime Factor Dig. Year
7484816437344908898623912 ~2017
7485326516314970653032712 ~2016
7485791779114971583558312 ~2016
7486861445959894891567312 ~2017
748714890612515...32449714 2024
7487476817914974953635912 ~2016
7487483227114974966454312 ~2016
7487696686144926180116712 ~2017
7488432841114976865682312 ~2016
7489339306759914714453712 ~2017
7490437513114980875026312 ~2016
7490548881744943293290312 ~2017
7490623553914981247107912 ~2016
7490723365114981446730312 ~2016
7491139832314982279664712 ~2016
7491286841914982573683912 ~2016
7491499233174914992331112 ~2018
7491706706314983413412712 ~2016
7491932021914983864043912 ~2016
7492224247114984448494312 ~2016
7492779676759942237413712 ~2017
7494637291114989274582312 ~2016
7494770023114989540046312 ~2016
7495203919114990407838312 ~2016
7495237015114990474030312 ~2016
Exponent Prime Factor Dig. Year
7495327057159962616456912 ~2017
7495463549914990927099912 ~2016
7495659755914991319511912 ~2016
7496598563914993197127912 ~2016
7496905855114993811710312 ~2016
7497283034314994566068712 ~2016
7497399197914994798395912 ~2016
7497564425914995128851912 ~2016
7497765023959982120191312 ~2017
7498248685114996497370312 ~2016
7498306237974983062379112 ~2018
7500566705915001133411912 ~2016
7500944588315001889176712 ~2016
7501507382960012059063312 ~2017
7501778804960014230439312 ~2017
7501842933175018429331112 ~2018
7502400773915004801547912 ~2016
750335227492986...05410314 2023
7503457221175034572211112 ~2018
7503847153345023082919912 ~2017
7503884603345023307619912 ~2017
7504343600960034748807312 ~2017
7504700900315009401800712 ~2016
7504858649915009717299912 ~2016
7506108011915012216023912 ~2016
Exponent Prime Factor Dig. Year
7506196453115012392906312 ~2016
7506272147960050177183312 ~2017
7506344137115012688274312 ~2016
7506441727760051533821712 ~2017
750700208994384...20501714 2024
7507549165115015098330312 ~2016
7507702585115015405170312 ~2016
7507943168315015886336712 ~2016
7508167321115016334642312 ~2016
7508746838315017493676712 ~2016
7508987804315017975608712 ~2016
7509365825915018731651912 ~2016
7509708830315019417660712 ~2016
7510251023915020502047912 ~2016
7510341149915020682299912 ~2016
7510410977915020821955912 ~2016
7510655609960085244879312 ~2017
7510817933960086543471312 ~2017
7511429362145068576172712 ~2017
7511784313975117843139112 ~2018
7511966819915023933639912 ~2016
7512216584315024433168712 ~2016
7512220124315024440248712 ~2016
7512698752760101590021712 ~2017
7512765967115025531934312 ~2016
Home
4.768.925 digits
e-mail
25-05-04