Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
150105402539006324151911 ~2012
150115286633002305732711 ~2011
150122053193002441063911 ~2011
1501224610712009796885712 ~2012
150126141593002522831911 ~2011
150137062433002741248711 ~2011
150138910313002778206311 ~2011
150141878033002837560711 ~2011
150142489193002849783911 ~2011
1501436153927025850770312 ~2013
150151488593003029771911 ~2011
150156476539009388591911 ~2012
1501591813112012734504912 ~2012
150170209793003404195911 ~2011
150173870393003477407911 ~2011
150187484219011249052711 ~2012
150194620219011677212711 ~2012
150194724833003894496711 ~2011
1501949020112015592160912 ~2012
150199378193003987563911 ~2011
1502090777912016726223312 ~2012
150210501233004210024711 ~2011
150211034033004220680711 ~2011
150214018913004280378311 ~2011
150225596033004511920711 ~2011
Exponent Prime Factor Dig. Year
1502314263736055542328912 ~2013
150234013313004680266311 ~2011
150235434713004708694311 ~2011
150235738793004714775911 ~2011
1502463154112019705232912 ~2012
1502514365912020114927312 ~2012
1502548387336061161295312 ~2013
1502617614715026176147112 ~2012
150263182913005263658311 ~2011
150264745913005294918311 ~2011
150288216113005764322311 ~2011
1502936713915029367139112 ~2012
1502988096133065738114312 ~2013
1503010796912024086375312 ~2012
150305670113006113402311 ~2011
150310410233006208204711 ~2011
150311708513006234170311 ~2011
150316983713006339674311 ~2011
150319604513006392090311 ~2011
150321979313006439586311 ~2011
150329723513006594470311 ~2011
150330679793006613595911 ~2011
150330908513006618170311 ~2011
150338777393006775547911 ~2011
150343357313006867146311 ~2011
Exponent Prime Factor Dig. Year
150348416179020904970311 ~2012
150358995593007179911911 ~2011
1503594286315035942863112 ~2012
1503613358348115627465712 ~2013
1503619091912028952735312 ~2012
1503635440712029083525712 ~2012
150367244033007344880711 ~2011
150371968313007439366311 ~2011
150373050979022383058311 ~2012
150382141793007642835911 ~2011
150387693593007753871911 ~2011
150394847939023690875911 ~2012
1504031911324064510580912 ~2013
1504060532945121815987112 ~2013
150407226593008144531911 ~2011
150417421139025045267911 ~2012
150419805593008396111911 ~2011
150434150993008683019911 ~2011
150434290913008685818311 ~2011
150440691233008813824711 ~2011
150446439179026786350311 ~2012
150448068113008961362311 ~2011
150456127339027367639911 ~2012
150457123939027427435911 ~2012
150458339633009166792711 ~2011
Exponent Prime Factor Dig. Year
150460929233009218584711 ~2011
150473174513009463490311 ~2011
150476746793009534935911 ~2011
1504790965972229966363312 ~2014
150482082371661...89364914 2024
150483251633009665032711 ~2011
150484248833009684976711 ~2011
150499126793009982535911 ~2011
150500534779030032086311 ~2012
150502988633010059772711 ~2011
150513368513010267370311 ~2011
150517378193010347563911 ~2011
150524618633010492372711 ~2011
150527917311168...38325714 2023
1505376186724086018987312 ~2013
150543400793010868015911 ~2011
150544241393010884827911 ~2011
150548819513010976390311 ~2011
150552647513011052950311 ~2011
150566648819033998928711 ~2012
150567394793011347895911 ~2011
150567804113011356082311 ~2011
150572778833011455576711 ~2011
150573775913011475518311 ~2011
150575988593011519771911 ~2011
Home
5.187.277 digits
e-mail
25-11-17