Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6342856031338057136187912 ~2017
6343242064750745936517712 ~2017
6343336631912686673263912 ~2015
6343495381112686990762312 ~2015
6343592621912687185243912 ~2015
6344386189112688772378312 ~2015
6344464513738066787082312 ~2017
6345074359112690148718312 ~2015
6345383090312690766180712 ~2015
6345795194312691590388712 ~2015
6345967597112691935194312 ~2015
6346368920312692737840712 ~2015
6347269832312694539664712 ~2015
6347273384312694546768712 ~2015
6347336066312694672132712 ~2015
6347637473912695274947912 ~2015
6348827155112697654310312 ~2015
6348956573912697913147912 ~2015
6349187640138095125840712 ~2017
6349421275112698842550312 ~2015
6349423460312698846920712 ~2015
6349606327150796850616912 ~2017
6349621883912699243767912 ~2015
6349654615963496546159112 ~2017
6349680029912699360059912 ~2015
Exponent Prime Factor Dig. Year
6350395885112700791770312 ~2015
6350534156312701068312712 ~2015
6351298970312702597940712 ~2015
6351370619912702741239912 ~2015
6351492145112702984290312 ~2015
6351827576312703655152712 ~2015
6352153420363521534203112 ~2017
6352312171338113873027912 ~2017
6352870817912705741635912 ~2015
6353097194312706194388712 ~2015
6353384034138120304204712 ~2017
6353603689112707207378312 ~2015
6353609689112707219378312 ~2015
6353929384138123576304712 ~2017
635408568619099...02495314 2025
6354170669912708341339912 ~2015
6354242509112708485018312 ~2015
6354271279738125627678312 ~2017
6354383797112708767594312 ~2015
635459072395998...43361714 2023
6355081856312710163712712 ~2015
6355096769912710193539912 ~2015
6355287733112710575466312 ~2015
6355565466138133392796712 ~2017
6355656625338133939751912 ~2017
Exponent Prime Factor Dig. Year
6356363971738138183830312 ~2017
6356458181912712916363912 ~2015
6356858533112713717066312 ~2015
6356960768312713921536712 ~2015
6357708362312715416724712 ~2015
6358138634312716277268712 ~2015
6358254953912716509907912 ~2015
6358331725112716663450312 ~2015
6358520660312717041320712 ~2015
6358615076312717230152712 ~2015
635899634712390...26509714 2023
6359024461750872195693712 ~2017
6359812520312719625040712 ~2015
6360662318312721324636712 ~2015
6360870644312721741288712 ~2015
6361010425338166062551912 ~2017
6361707857912723415715912 ~2015
6361918837750895350701712 ~2017
6361972034312723944068712 ~2015
6362157572312724315144712 ~2015
6362167031912724334063912 ~2015
6362224670312724449340712 ~2015
6362229073112724458146312 ~2015
6362414965112724829930312 ~2015
6362643122312725286244712 ~2015
Exponent Prime Factor Dig. Year
6363050618312726101236712 ~2015
6363353731338180122387912 ~2017
6363563741912727127483912 ~2015
6363661835912727323671912 ~2015
6363828309738182969858312 ~2017
636420574032515...85665715 2024
6364739484138188436904712 ~2017
6364783757912729567515912 ~2015
6364844904138189069424712 ~2017
6365245749738191474498312 ~2017
6366366133150930929064912 ~2017
6366558728312733117456712 ~2015
6366742201963667422019112 ~2017
6367279163912734558327912 ~2015
6367543814312735087628712 ~2015
6367626971912735253943912 ~2015
6367757513950942060111312 ~2017
6368136541112736273082312 ~2015
6368149865912736299731912 ~2015
6368272789738209636738312 ~2017
6368494085912736988171912 ~2015
6368964581912737929163912 ~2015
6369024539338214147235912 ~2017
6369033632312738067264712 ~2015
6369209563338215257379912 ~2017
Home
4.724.182 digits
e-mail
25-04-13